[1]
Y. Tang, L. Liu, H. Zhao, D. Jia, X. Xie, Y. Zhang and X. Li, Cryst. Eng. Comm. 18(2016)4489–4494.
Google Scholar
[2]
C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang and Q. Yang, Chem. Commun. 52(2016)12143-12146.
Google Scholar
[3]
K. Elouarzaki, M. Holzinger, A. Le Goff, J. Thery, R. S. Marksae and S. Cosnier, J. Mater. Chem. A. 4(2016)10635–10640.
DOI: 10.1039/c6ta04477h
Google Scholar
[4]
Y. Liu, J. Han, N. Wei, S. Qiu, H. Li, Q. Li, S. Wang and L. Peng, Nanoscale. 8(2016)17122–17130.
Google Scholar
[5]
T. Dinh, H. Phan, T. Nguyen, A. Qamar, A. R. M. Foisal, T. N. Viet, C. Tran, Y. Zhu, N. Nguyen, and D. V. Dao, J. Mater. Chem. C, 2016, in press.
DOI: 10.1039/c6tc02708c
Google Scholar
[6]
G. Wu, C. Gao, G. Chen, X. Wang and H. Wang, J. Mater. Chem. A. 4(2016)14187–14193.
Google Scholar
[7]
P. Xiao, J. Gu, J. He, S. Wang, J. Zhang, Y. Huang, S. Kuo and T. Chen, J. Mater. Chem. C, in press.
Google Scholar
[8]
R. Wang, Q. Wu, X. Zhang, Z. Yang, L. Gao, J. Ni and O. K. C. Tsui, J. Mater. Chem. A. 4(2016)12602–12608.
Google Scholar
[9]
F. M. Guo, R. Q. Xu, X. Cui, L. Zhang, K. L. Wang, Y. W. Yao and J. Q. Wei, J. Mater. Chem. A. 4(2016)9311–9318.
Google Scholar
[10]
Y. Lu, Z. Zhang, X. Liu, W. Wang, T. Peng, P. Guo, H. Sun, H. Yan and Y. Luo, Cryst. Eng. Comm, in press.
Google Scholar
[11]
J. Cherusseria and K. K. Kar, J. Mater. Chem. A. 4(2016)9910–9922.
Google Scholar
[12]
H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He and X. Zhang, J. Mater. Chem. A. 4(2016)11256–11263.
Google Scholar
[13]
F. Yang, P. Zhao X. Hua, W. Luo, G. Cheng, W. Xing and S. Chen, J. Mater. Chem. A, in press.
Google Scholar
[14]
R. Bafkary and S. Khoee, Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery, RSC Adv. 6(2016)82553–82565.
DOI: 10.1039/c6ra12463a
Google Scholar
[15]
S. Foillard, J. Russier, C. Seifert, H. Dumortier and E. Doris, Carbon nanotube-mediated delivery of budesonide to macrophages, RSC Adv. 6(2016)53282–53287.
DOI: 10.1039/c6ra09809f
Google Scholar
[16]
X. Liu, A. Lee Miller II, S. Park, B. E. Waletzki, A. Terzic, M. J. Yaszemskia and L. Lu, J. Mater. Chem. B, in press.
Google Scholar
[17]
R. Rajesh, Y. Dominic Ravichandran, M. Jeevan Kumar Reddy, S. H. Ryuc and A. M. Shanmugharaj, RSC Adv. 6(2016)82385–82393.
DOI: 10.1039/c6ra16709h
Google Scholar
[18]
P. K. Duy, J. Sohn and H. Chung, Analyst. 141(2016)5879–5885.
Google Scholar
[19]
R. Prasad, V. Ganesh and B. R. Bhat, RSC Adv. 6(2016)62491–62500.
Google Scholar
[20]
P. M. Wilson, A. Zobel, A. J. Zaitouna, A. Lipatov, E. Schubert, T. Hofmann, M. Schubert, R. Lai and A. Sinitskii, RSC Adv. 6(2016)63235–63240.
DOI: 10.1039/c6ra09252g
Google Scholar
[21]
P. Sahatiya and S. Badhulika, RSC Adv. 6(2016)95836–95845.
Google Scholar
[22]
X. Gu, Q. Fan, F. Yang, L. Cai, N. Zhang, W. Zhou, W. Zhou and S. Xie, Hydro-actuation of hybrid carbon nanotube yarn muscles, Nanoscale. 2016, in press.
DOI: 10.1039/c6nr06185k
Google Scholar
[23]
S. Dou, X. Li, L. Tao, J. Huo and S. Wang, Chem. Commun. 52( 2016)9727-9730.
Google Scholar
[24]
J. Xiao, X. Pan, F. Zhang, H. Li and X. Bao, Size-dependence of carbon nanotube confinement in catalysis, Chem. Sci. 2016, in press.
Google Scholar
[25]
X. Li, Y. Fang, F. Li, M. Tian, X. Long, J. Jin and J. Ma, J. Mater. Chem. A, in press.
Google Scholar
[26]
Y. Liu, F. Wang, Y. Liu, X. Wang, Y. Xu and R. Zhang, Charge transfer at carbon nanotube–grapheme van der Waals heterojunctions, Nanoscale. 8(2016)12883–12886.
DOI: 10.1039/c6nr03965k
Google Scholar
[27]
C. Cheng, Y. Wang, J. Chen and D. Lee, J. Mater. Chem. C. 4(2016)5207-5213.
Google Scholar
[28]
R. Song, K. Yan, Z. Lin, J. S. C. Loo, L. Pan, Q. Zhang, J. Zhang and J. Zhu, J. Mater. Chem. A. 4(2016)14555–14559.
Google Scholar
[29]
Y. Ji, L. Lai and S. F. Y. Li, RSC Adv. 6(2016)53705–53712.
Google Scholar
[30]
R. Kumar, T. Bhuvana, G. Mishraa and A. Sharma, RSC Adv. 6(2016)73496–73505.
Google Scholar
[31]
D. Hursa'n, A. Korma'nyos, K. Rajeshwar and C. Jana'ky, Chem. Commun. 52(2016)8858-8861.
Google Scholar
[32]
R. Ramkumar and M. M. Sundaram, New J. Chem. 40(2016)7456-7464.
Google Scholar
[33]
M. H. A. Rehim, A. M. Youssef, H. Al-Said, G. Turkyc and M. Aboaly, RSC Adv. 6(2016)94556–94563.
DOI: 10.1039/c6ra18748j
Google Scholar
[34]
M. D. Tezerjani, A. Benvidi, M. Rezaeinasab, S. Jahanbani, S. M. Moshtaghioun, M. Youssefic and K. Zarrini, Anal. Methods, in press.
DOI: 10.1039/c6ay01524g
Google Scholar
[35]
M. P. Khesuoe, F. O. Okumu and M. C. Matoetoe, Anal. Methods. 8(2016)7087–7095.
DOI: 10.1039/c6ay01733a
Google Scholar
[36]
J. Das and P. Sarkar, Enzymatic electrochemical biosensor for urea with a polyaniline grafted conducting hydrogel composite modified electrode, RSC Adv. 6(2016)92520–92533.
DOI: 10.1039/c6ra12159d
Google Scholar
[37]
X. Zhuang, C. Tian, F. Luan, X. Wu and L. Chen, RSC Adv. 6(2016)92541–92546.
Google Scholar
[38]
X. Zhu, J. Zhao and C. Wang, Acid and base dual-controlled cargo molecule release from polyaniline gated-hollow mesoporous silica nanoparticles, Polym. Chem., in press.
DOI: 10.1039/c6py01507g
Google Scholar
[39]
C. Chang, Z. Hu, T. Lee, Y. Huang, W. Ji, W. Liu, J. Yeh and Y. Wei, J. Mater. Chem. A. 4(2016)9133–9145.
Google Scholar
[40]
Q. Liu, S. Jing, S. Wang, H. Zhuo, L. Zhong, X. Peng and R. Sun, J. Mater. Chem. A. 4(2016)13352–13362.
Google Scholar
[41]
R. Wang, Q. Wu, X. Zhang, Z. Yang, L. Gao, J. Ni and O. K. C. Tsu, J. Mater. Chem. A. 4(2016)12602–12608.
Google Scholar
[42]
X. Yang, Y. Liu, H. Lei and B. Li, An organic–inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots, Nanoscale. 8(2016)15529–15537.
DOI: 10.1039/c6nr04030f
Google Scholar
[43]
Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan and X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors, Nanoscale. 8(2016)12073–12080.
DOI: 10.1039/c6nr02540d
Google Scholar
[44]
W. Jin, L. Han, X. Han, B. Zhang and P. Xu, Interfacial synthesis of lollipop-like Au–polyaniline nanocomposites for catalytic applications, RSC Adv. 6(2016)81983–81988.
DOI: 10.1039/c6ra15446h
Google Scholar
[45]
H. Bai, Y. Zheng, T. Wang and N. Peng, Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity, J. Mater. Chem. A. 4(2016)14392–14399.
DOI: 10.1039/c6ta07025f
Google Scholar
[46]
F. Zhang, Y. Sun, D. Tian, W. S. Shin, J. S. Kim and H. Li, Selective molecular recognition on calixarene-functionalized 3D surfaces, Chem. Commun. In press.
DOI: 10.1039/c6cc05876k
Google Scholar
[47]
M. Chen, T. Li, S. Peng and D. Tao, Supramolecular nanocapsule from self-assembly of amphiphilic calixarene as a carrier for paclitaxel, New J. Chem. 2016, in press.
DOI: 10.1039/c6nj01986b
Google Scholar
[48]
M. Massaro, V. Cin`a, M. Labbozzetta, G. Lazzara, P. Lo Meo, P. Poma, S. Riela and R. Noto, Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs, RSC Adv. 6(2016).
DOI: 10.1039/c6ra06143e
Google Scholar
[49]
K.V. Kostyukevycha, R.V. Khristosenkoa, A.S. Pavluchenkoa, A.A. Vakhulaa, Z.I. Kazantsevaa, I.A. Koshetsa, Yu.M. Shirshov, Sensors and Actuators B. 223 (2016) 470–480.
Google Scholar
[50]
S. Zhang, H. Yang, Y. Ma, Y. Fang, A fluorescent bis-NBD derivative of calix.
Google Scholar
[4]
arene: Switchableresponse to Ag+and HCHO in solution phase, Sensors and Actuators B. 227 (2016) 271–276.
Google Scholar
[51]
F. Temel, M. Tabakci, Calix.
Google Scholar
[4]
arene coated QCM sensors for detection of VOC emissions: Methylene chloride sensing studies, Talanta. 153(2016)221–227.
DOI: 10.1016/j.talanta.2016.03.026
Google Scholar
[52]
L. Leonova, L. ' Shmygleva, A. Ukshe, A. Levchenko, A. Chub, Y. Dobrovolsky, Solid-state hydrogen sensors based oncalixarene-12-phosphatotungstic acid composite electrolytes, Sensors and Actuators B. 230 (2016) 470–476.
DOI: 10.1016/j.snb.2016.02.083
Google Scholar
[53]
P. Zhang, Y. Wang, D. Zhang, C. Liu, D. Wang, S. He, Guowen Hu and Xiuqin Tang, Calixarene-functionalized graphene oxide composites fixed on glassy carbon electrodes for electrochemical detection, RSC Adv. 6(2016)91910–91920.
DOI: 10.1039/c6ra19674h
Google Scholar
[54]
M. A. Kamboh, W. A. W. Ibrahim, H. R. Nodeh, M. M. Sanagiac and S. T. Hussain Sherazi, New J. Chem. 40(2016)3130-3138.
Google Scholar
[55]
J. Li, Y. Wang, S. Yan, X. Li, S. Pan, Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits, Food Chemistry. 192 (2016) 260-267.
DOI: 10.1016/j.foodchem.2015.07.018
Google Scholar
[56]
A. Kaya, C. Onac, H. K. Alpoguz, A. Yilmaz, N. Atar, Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water, Chemical Engineering Journal. 283 (2016) 141–149.
DOI: 10.1016/j.cej.2015.07.052
Google Scholar
[57]
M. D. Rosa, P. L. Manna, A. Soriente, C. Gaeta, C. Talotta and P. Neri, Exploiting the hydrophobicity of calixarene macrocycles for catalysis under on-water, conditions, RSC Adv. 6(2016)91846–91851.
DOI: 10.1039/c6ra19270j
Google Scholar
[58]
S. Akın, M. Gülen, S. Sayın, H. Azak, H. B. Yıldız, S. S€onmezo_glu, Journal of Power Sources. 307 (2016) 796-805.
DOI: 10.1016/j.jpowsour.2016.01.015
Google Scholar
[59]
Z. Rafiee, A. Kakanejadifard, R. Hosseinzadeh, M. Nematib and M. Adeli, RSC Adv. 6(2016)17470–17473.
DOI: 10.1039/c5ra24941d
Google Scholar