Nanocomposites of Carbon Nanotube/Polyaniline with Pending Calix[8]Arene and their External Stimuli Response Properties

Article Preview

Abstract:

To functionalize the smart nanocomposites, the nanocomposites of CNTs/polyaniline with pending calix [8] arene were prepared. A series of characterizations were performed by SEM (scanning electron microscopy), the Fourier-Transform Infrared (FTIR) spectra, The UV-Vis (Ultra-violet visible spectroscopy), et al. The photoconductivity response to visible light and 808 nm laser with low-power were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate with casting method. The results showed that the nanocomposites of CNTs/polyaniline with pending calix [8] arene exhibited good photoresponse to visible light and weak 808 nm laser, but its recoverability was very slow, it needed several hours, and the film-forming property of nanocomposite was not very good. This may be attributed to the results of increased hydrophobicity of nanocomposite because of introducing the calix [8] arene ring. In order to increase the film-forming technology of nanocomposites, the grapheme oxide were obtained with unzipping method of carbon nanotube (CNTs) for enhancing the hydrophilcity of carbon nanomaterials. The nanocomposites of grapheme oxide/polyaniline with pending calix [8] arene were obtained with similar methods, which showed improved film-forming property. The photoresponses to weak visible light and 808 nm laser also showed the similar results. It may develop the nanocomposite with external stimuli response, and have good potential applications in sensors, organic photocatalyst, et al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2286-2293

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Tang, L. Liu, H. Zhao, D. Jia, X. Xie, Y. Zhang and X. Li, Cryst. Eng. Comm. 18(2016)4489–4494.

Google Scholar

[2] C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang and Q. Yang, Chem. Commun. 52(2016)12143-12146.

Google Scholar

[3] K. Elouarzaki, M. Holzinger, A. Le Goff, J. Thery, R. S. Marksae and S. Cosnier, J. Mater. Chem. A. 4(2016)10635–10640.

DOI: 10.1039/c6ta04477h

Google Scholar

[4] Y. Liu, J. Han, N. Wei, S. Qiu, H. Li, Q. Li, S. Wang and L. Peng, Nanoscale. 8(2016)17122–17130.

Google Scholar

[5] T. Dinh, H. Phan, T. Nguyen, A. Qamar, A. R. M. Foisal, T. N. Viet, C. Tran, Y. Zhu, N. Nguyen, and D. V. Dao, J. Mater. Chem. C, 2016, in press.

DOI: 10.1039/c6tc02708c

Google Scholar

[6] G. Wu, C. Gao, G. Chen, X. Wang and H. Wang, J. Mater. Chem. A. 4(2016)14187–14193.

Google Scholar

[7] P. Xiao, J. Gu, J. He, S. Wang, J. Zhang, Y. Huang, S. Kuo and T. Chen, J. Mater. Chem. C, in press.

Google Scholar

[8] R. Wang, Q. Wu, X. Zhang, Z. Yang, L. Gao, J. Ni and O. K. C. Tsui, J. Mater. Chem. A. 4(2016)12602–12608.

Google Scholar

[9] F. M. Guo, R. Q. Xu, X. Cui, L. Zhang, K. L. Wang, Y. W. Yao and J. Q. Wei, J. Mater. Chem. A. 4(2016)9311–9318.

Google Scholar

[10] Y. Lu, Z. Zhang, X. Liu, W. Wang, T. Peng, P. Guo, H. Sun, H. Yan and Y. Luo, Cryst. Eng. Comm, in press.

Google Scholar

[11] J. Cherusseria and K. K. Kar, J. Mater. Chem. A. 4(2016)9910–9922.

Google Scholar

[12] H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He and X. Zhang, J. Mater. Chem. A. 4(2016)11256–11263.

Google Scholar

[13] F. Yang, P. Zhao X. Hua, W. Luo, G. Cheng, W. Xing and S. Chen, J. Mater. Chem. A, in press.

Google Scholar

[14] R. Bafkary and S. Khoee, Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery, RSC Adv. 6(2016)82553–82565.

DOI: 10.1039/c6ra12463a

Google Scholar

[15] S. Foillard, J. Russier, C. Seifert, H. Dumortier and E. Doris, Carbon nanotube-mediated delivery of budesonide to macrophages, RSC Adv. 6(2016)53282–53287.

DOI: 10.1039/c6ra09809f

Google Scholar

[16] X. Liu, A. Lee Miller II, S. Park, B. E. Waletzki, A. Terzic, M. J. Yaszemskia and L. Lu, J. Mater. Chem. B, in press.

Google Scholar

[17] R. Rajesh, Y. Dominic Ravichandran, M. Jeevan Kumar Reddy, S. H. Ryuc and A. M. Shanmugharaj, RSC Adv. 6(2016)82385–82393.

DOI: 10.1039/c6ra16709h

Google Scholar

[18] P. K. Duy, J. Sohn and H. Chung, Analyst. 141(2016)5879–5885.

Google Scholar

[19] R. Prasad, V. Ganesh and B. R. Bhat, RSC Adv. 6(2016)62491–62500.

Google Scholar

[20] P. M. Wilson, A. Zobel, A. J. Zaitouna, A. Lipatov, E. Schubert, T. Hofmann, M. Schubert, R. Lai and A. Sinitskii, RSC Adv. 6(2016)63235–63240.

DOI: 10.1039/c6ra09252g

Google Scholar

[21] P. Sahatiya and S. Badhulika, RSC Adv. 6(2016)95836–95845.

Google Scholar

[22] X. Gu, Q. Fan, F. Yang, L. Cai, N. Zhang, W. Zhou, W. Zhou and S. Xie, Hydro-actuation of hybrid carbon nanotube yarn muscles, Nanoscale. 2016, in press.

DOI: 10.1039/c6nr06185k

Google Scholar

[23] S. Dou, X. Li, L. Tao, J. Huo and S. Wang, Chem. Commun. 52( 2016)9727-9730.

Google Scholar

[24] J. Xiao, X. Pan, F. Zhang, H. Li and X. Bao, Size-dependence of carbon nanotube confinement in catalysis, Chem. Sci. 2016, in press.

Google Scholar

[25] X. Li, Y. Fang, F. Li, M. Tian, X. Long, J. Jin and J. Ma, J. Mater. Chem. A, in press.

Google Scholar

[26] Y. Liu, F. Wang, Y. Liu, X. Wang, Y. Xu and R. Zhang, Charge transfer at carbon nanotube–grapheme van der Waals heterojunctions, Nanoscale. 8(2016)12883–12886.

DOI: 10.1039/c6nr03965k

Google Scholar

[27] C. Cheng, Y. Wang, J. Chen and D. Lee, J. Mater. Chem. C. 4(2016)5207-5213.

Google Scholar

[28] R. Song, K. Yan, Z. Lin, J. S. C. Loo, L. Pan, Q. Zhang, J. Zhang and J. Zhu, J. Mater. Chem. A. 4(2016)14555–14559.

Google Scholar

[29] Y. Ji, L. Lai and S. F. Y. Li, RSC Adv. 6(2016)53705–53712.

Google Scholar

[30] R. Kumar, T. Bhuvana, G. Mishraa and A. Sharma, RSC Adv. 6(2016)73496–73505.

Google Scholar

[31] D. Hursa'n, A. Korma'nyos, K. Rajeshwar and C. Jana'ky, Chem. Commun. 52(2016)8858-8861.

Google Scholar

[32] R. Ramkumar and M. M. Sundaram, New J. Chem. 40(2016)7456-7464.

Google Scholar

[33] M. H. A. Rehim, A. M. Youssef, H. Al-Said, G. Turkyc and M. Aboaly, RSC Adv. 6(2016)94556–94563.

DOI: 10.1039/c6ra18748j

Google Scholar

[34] M. D. Tezerjani, A. Benvidi, M. Rezaeinasab, S. Jahanbani, S. M. Moshtaghioun, M. Youssefic and K. Zarrini, Anal. Methods, in press.

DOI: 10.1039/c6ay01524g

Google Scholar

[35] M. P. Khesuoe, F. O. Okumu and M. C. Matoetoe, Anal. Methods. 8(2016)7087–7095.

DOI: 10.1039/c6ay01733a

Google Scholar

[36] J. Das and P. Sarkar, Enzymatic electrochemical biosensor for urea with a polyaniline grafted conducting hydrogel composite modified electrode, RSC Adv. 6(2016)92520–92533.

DOI: 10.1039/c6ra12159d

Google Scholar

[37] X. Zhuang, C. Tian, F. Luan, X. Wu and L. Chen, RSC Adv. 6(2016)92541–92546.

Google Scholar

[38] X. Zhu, J. Zhao and C. Wang, Acid and base dual-controlled cargo molecule release from polyaniline gated-hollow mesoporous silica nanoparticles, Polym. Chem., in press.

DOI: 10.1039/c6py01507g

Google Scholar

[39] C. Chang, Z. Hu, T. Lee, Y. Huang, W. Ji, W. Liu, J. Yeh and Y. Wei, J. Mater. Chem. A. 4(2016)9133–9145.

Google Scholar

[40] Q. Liu, S. Jing, S. Wang, H. Zhuo, L. Zhong, X. Peng and R. Sun, J. Mater. Chem. A. 4(2016)13352–13362.

Google Scholar

[41] R. Wang, Q. Wu, X. Zhang, Z. Yang, L. Gao, J. Ni and O. K. C. Tsu, J. Mater. Chem. A. 4(2016)12602–12608.

Google Scholar

[42] X. Yang, Y. Liu, H. Lei and B. Li, An organic–inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots, Nanoscale. 8(2016)15529–15537.

DOI: 10.1039/c6nr04030f

Google Scholar

[43] Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan and X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors, Nanoscale. 8(2016)12073–12080.

DOI: 10.1039/c6nr02540d

Google Scholar

[44] W. Jin, L. Han, X. Han, B. Zhang and P. Xu, Interfacial synthesis of lollipop-like Au–polyaniline nanocomposites for catalytic applications, RSC Adv. 6(2016)81983–81988.

DOI: 10.1039/c6ra15446h

Google Scholar

[45] H. Bai, Y. Zheng, T. Wang and N. Peng, Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity, J. Mater. Chem. A. 4(2016)14392–14399.

DOI: 10.1039/c6ta07025f

Google Scholar

[46] F. Zhang, Y. Sun, D. Tian, W. S. Shin, J. S. Kim and H. Li, Selective molecular recognition on calixarene-functionalized 3D surfaces, Chem. Commun. In press.

DOI: 10.1039/c6cc05876k

Google Scholar

[47] M. Chen, T. Li, S. Peng and D. Tao, Supramolecular nanocapsule from self-assembly of amphiphilic calixarene as a carrier for paclitaxel, New J. Chem. 2016, in press.

DOI: 10.1039/c6nj01986b

Google Scholar

[48] M. Massaro, V. Cin`a, M. Labbozzetta, G. Lazzara, P. Lo Meo, P. Poma, S. Riela and R. Noto, Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs, RSC Adv. 6(2016).

DOI: 10.1039/c6ra06143e

Google Scholar

[49] K.V. Kostyukevycha, R.V. Khristosenkoa, A.S. Pavluchenkoa, A.A. Vakhulaa, Z.I. Kazantsevaa, I.A. Koshetsa, Yu.M. Shirshov, Sensors and Actuators B. 223 (2016) 470–480.

Google Scholar

[50] S. Zhang, H. Yang, Y. Ma, Y. Fang, A fluorescent bis-NBD derivative of calix.

Google Scholar

[4] arene: Switchableresponse to Ag+and HCHO in solution phase, Sensors and Actuators B. 227 (2016) 271–276.

Google Scholar

[51] F. Temel, M. Tabakci, Calix.

Google Scholar

[4] arene coated QCM sensors for detection of VOC emissions: Methylene chloride sensing studies, Talanta. 153(2016)221–227.

DOI: 10.1016/j.talanta.2016.03.026

Google Scholar

[52] L. Leonova, L. ' Shmygleva, A. Ukshe, A. Levchenko, A. Chub, Y. Dobrovolsky, Solid-state hydrogen sensors based oncalixarene-12-phosphatotungstic acid composite electrolytes, Sensors and Actuators B. 230 (2016) 470–476.

DOI: 10.1016/j.snb.2016.02.083

Google Scholar

[53] P. Zhang, Y. Wang, D. Zhang, C. Liu, D. Wang, S. He, Guowen Hu and Xiuqin Tang, Calixarene-functionalized graphene oxide composites fixed on glassy carbon electrodes for electrochemical detection, RSC Adv. 6(2016)91910–91920.

DOI: 10.1039/c6ra19674h

Google Scholar

[54] M. A. Kamboh, W. A. W. Ibrahim, H. R. Nodeh, M. M. Sanagiac and S. T. Hussain Sherazi, New J. Chem. 40(2016)3130-3138.

Google Scholar

[55] J. Li, Y. Wang, S. Yan, X. Li, S. Pan, Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits, Food Chemistry. 192 (2016) 260-267.

DOI: 10.1016/j.foodchem.2015.07.018

Google Scholar

[56] A. Kaya, C. Onac, H. K. Alpoguz, A. Yilmaz, N. Atar, Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water, Chemical Engineering Journal. 283 (2016) 141–149.

DOI: 10.1016/j.cej.2015.07.052

Google Scholar

[57] M. D. Rosa, P. L. Manna, A. Soriente, C. Gaeta, C. Talotta and P. Neri, Exploiting the hydrophobicity of calixarene macrocycles for catalysis under on-water, conditions, RSC Adv. 6(2016)91846–91851.

DOI: 10.1039/c6ra19270j

Google Scholar

[58] S. Akın, M. Gülen, S. Sayın, H. Azak, H. B. Yıldız, S. S€onmezo_glu, Journal of Power Sources. 307 (2016) 796-805.

DOI: 10.1016/j.jpowsour.2016.01.015

Google Scholar

[59] Z. Rafiee, A. Kakanejadifard, R. Hosseinzadeh, M. Nematib and M. Adeli, RSC Adv. 6(2016)17470–17473.

DOI: 10.1039/c5ra24941d

Google Scholar