[1]
M. Jassal, S. Ghosh, Aramid fibres - an overview, J. Fibre Text. Res. 27 (2002) 290-306.
Google Scholar
[2]
T.V. Druzhinina, Modified polyamide fibres with improved consumer properties. A review, Fibre Chem. 26 (1994) 306-315.
DOI: 10.1007/pl00020098
Google Scholar
[3]
A.D. Erem, G. Ozcan, M. Skrifvars, M. Cakmak, In vitro assesment of antimicrobial activity and characteristics of polyamide 6/silver nanocomposite fibers, Fiber Polym. 14 (2013) 1415-1421.
DOI: 10.1007/s12221-013-1415-6
Google Scholar
[4]
A. Cavallaro, S. Taheri, K. Vasilev, Responsive and smart, antibacterial surfaces: common approaches and new developments (review), Biointerphases, 9 (2014) 029005-029005.
DOI: 10.1116/1.4866697
Google Scholar
[5]
A. Muñoz-Bonilla, M. Fernández-García, Polymeric materials with antimicrobial activity, Prog. Polym. Sci. 37 (2012) 281-339.
Google Scholar
[6]
P. Tan, Y.H. Li, X.Q. Liu, Y. Jiang, L.B. Sun. Core–shell AgCl@SiO2 nanoparticles: Ag(I)-based antibacterial materials with enhanced stability, ACS Sustain. Chem. En. 4 (2016) 3268-3275.
DOI: 10.1021/acssuschemeng.6b00309
Google Scholar
[7]
C.F. Ba, A.A. Mc, M.Á. Omar, Copper: Synthesis techniques in nanoscale and powerful application as an antimicrobial agent, J. Nanomater. (2015).
Google Scholar
[8]
K. Kairyte, A. Kadys, Z. Luksiene, Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension, J. Photoch. Photobio. 128 (2013) 78-84.
DOI: 10.1016/j.jphotobiol.2013.07.017
Google Scholar
[9]
K. Dědková, B. Janíková, K. Matějová, K. Čabanová, R. Váňa, A. Kalup, M. Hundáková, J. Kukutschová, ZnO/graphite composites and its antibacterial activity at different conditions, J. Photoch. Photobio. 151 (2015) 256-263.
DOI: 10.1016/j.jphotobiol.2015.08.017
Google Scholar
[10]
M. Li, G. Li, J. Jiang, Z.S. Zhang, X. Dai, K.C. Mai, Ultraviolet resistance and antimicrobial properties of ZnO in the polypropylene materials: a review, J. Mater. Sci-Mater El. 31 (2015) 331-339.
DOI: 10.1016/j.jmst.2014.11.022
Google Scholar
[11]
T.D. Fornes, D.R. Paul. Crystallization behavior of nylon 6 nanocomposites, Polymer, 44 (2003) 3945-3961.
DOI: 10.1016/s0032-3861(03)00344-6
Google Scholar
[12]
S. Xu, X.W. Zhao, L. Ye. Effect of heat treatment on the structure and properties of MC nylon 6, Polymer-Plast. Technol. 51 (2012) 689-695.
DOI: 10.1080/03602559.2012.661902
Google Scholar
[13]
S. Liu, Y. Yu, Y. Cui, H. Zhang, Z. Mo, Isothermal and nonisothermal crystallization kinetics of nylon-11, J. Appl. Polym. Sci. 70 (1998) 2371-2380.
DOI: 10.1002/(sici)1097-4628(19981219)70:12<2371::aid-app9>3.0.co;2-4
Google Scholar
[14]
B. Mu, Q.H. Wang, H.G. Wang, L.Q. Jian, Nonisothermal crystallization kinetics of nylon 66/montmorillonite nanocomposites, J. Macromol. Sci. B, 46 (2007) 1093-1104.
DOI: 10.1080/00222340701582522
Google Scholar
[15]
F. Zhang, B. Wang, R. Man, Z. Peng, Isothermal crystallization kinetics of in situ Nylon 6/graphene composites by differential scanning calorimetry, Polym. Eng. Sci. 54 (2013) 1381-1388.
DOI: 10.1002/pen.23812
Google Scholar
[16]
W. Weng, G. Chen, D. Wu, Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites, Polymer, 44 (2003) 8119-8132.
DOI: 10.1016/j.polymer.2003.10.028
Google Scholar
[17]
Q. Jia, Z. Xiong, C. Shi, L. Zhang, X. Wang, Preparation and properties of polyamide 6 fibers prepared by the gel spinning method, J. Appl. Polym. Sci. 124 (2011) 5165–5171.
DOI: 10.1002/app.33763
Google Scholar
[18]
I. Matai, A. Sachdev, P. Dubey, S. Kumar, B. Bhushan, P. Gopinath. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus, and GFP-expressing antibiotic resistant E. coli, Colloid. Surface. B, 115 (2014) 359-367.
DOI: 10.1016/j.colsurfb.2013.12.005
Google Scholar
[19]
A.A. Othman, M.A. Ali, E.M.M. Ibrahim, M.A. Osman, Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method, J. Alloy. Compd. 683 (2016).
DOI: 10.1016/j.jallcom.2016.05.131
Google Scholar
[20]
C. Wang, S.Y. Tsou, H.S. Lin, Brill transition of nylon-6 in electrospun nanofibers, Colloid Polym. Sci. 290 (2012) 1799-1809.
DOI: 10.1007/s00396-012-2724-9
Google Scholar
[21]
J. Song, H. Zhang, M. Ren, Q. Chen, X. Sun, S. Wang, H. Zhang, Z. Mo, Crystal transition of nylon-12, 12 under drawing and annealing, Macromol. Rapid Com. 26 (2005) 487-490.
DOI: 10.1002/marc.200400549
Google Scholar
[22]
Y. Wolanov, A. Y. Feldman, H. Harel, G. Marom, Amorphous and crystalline phase interaction during the Brill transition in nylon 66, Express Polym. Lett. 3 (2009) 452-457.
DOI: 10.3144/expresspolymlett.2009.55
Google Scholar
[23]
M. Olivares, H. López-Valdivia, G. Vázquez-Polo, H. Carrasco, A. Alvarez-Castillo, E. Oliva, V. M. Castaño. Studies on the effects of γ-radiation on the mechanical properties of nylon 6-12 fibers, Polym. Bull. 6 (1996) 629-636.
DOI: 10.1007/bf00342456
Google Scholar
[24]
J. Pepin, V. Miri, J. M. Lefebvre. New insights into the brill transition in polyamide 11 and polyamide 6, Macromolecules, 49 (2016) 564-573.
DOI: 10.1021/acs.macromol.5b01701
Google Scholar
[25]
T.K. Jana, S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, K. Chatterjee, Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology, J. Colloid Interf. Sci. 4800(2016) 9-16.
DOI: 10.1016/j.jcis.2016.06.073
Google Scholar