Preparation and Characterization of Antibacterial Nylon 6 Fiber

Article Preview

Abstract:

Due to its excellent mechanical property, dye ability and skin affinity, PA6 has been widely used in apparel, home textiles, military products, etc. However, PA6 fiber is easy to breed bacteria and corroded by bacteria in humid environment. One of development tendency of functional PA6 fiber is to design and develop nylon 6 fiber with excellent antibacterial properties, which is also the research target of this paper. In the present investigation, ZnO antibacterial agent was prepared through sol-gel method, and antibacterial masterbatch was acquired via blending antibacterial agent with PA6 using a twin-screw, then antibacterial PA6 fiber was obtained through melt spinning. The thermal properties, crystallization property of antibacterial PA6 masterbatch were discussed. The effect of drawing ratio on fiber strength, elongation of break, orientation and crystallization was also investigated. The antibacterial properties of antibacterial agent and antibacterial PA6 fiber was analyzed by agar diffusion method. The results of Differential Scanning Calorimetry (DSC) suggests that the antibacterial agent causes the rise of crystallization temperature and crystallization rate. X-Ray Diffraction (XRD) and mechanical testing results reveal that the higher drawing ratio leads to higher orientation and strength of PA6 fiber, lower elongation at break. The addition of antibacterial agent increases the degree of orientation and crystallization, reduces the strength of fiber and tends to form α crystalline in PA6 fiber. Antibacterial tests show that antibacterial PA6 fiber has a good antibacterial performance against Staphylococcus aureus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2254-2262

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Jassal, S. Ghosh, Aramid fibres - an overview, J. Fibre Text. Res. 27 (2002) 290-306.

Google Scholar

[2] T.V. Druzhinina, Modified polyamide fibres with improved consumer properties. A review, Fibre Chem. 26 (1994) 306-315.

DOI: 10.1007/pl00020098

Google Scholar

[3] A.D. Erem, G. Ozcan, M. Skrifvars, M. Cakmak, In vitro assesment of antimicrobial activity and characteristics of polyamide 6/silver nanocomposite fibers, Fiber Polym. 14 (2013) 1415-1421.

DOI: 10.1007/s12221-013-1415-6

Google Scholar

[4] A. Cavallaro, S. Taheri, K. Vasilev, Responsive and smart, antibacterial surfaces: common approaches and new developments (review), Biointerphases, 9 (2014) 029005-029005.

DOI: 10.1116/1.4866697

Google Scholar

[5] A. Muñoz-Bonilla, M. Fernández-García, Polymeric materials with antimicrobial activity, Prog. Polym. Sci. 37 (2012) 281-339.

Google Scholar

[6] P. Tan, Y.H. Li, X.Q. Liu, Y. Jiang, L.B. Sun. Core–shell AgCl@SiO2 nanoparticles: Ag(I)-based antibacterial materials with enhanced stability, ACS Sustain. Chem. En. 4 (2016) 3268-3275.

DOI: 10.1021/acssuschemeng.6b00309

Google Scholar

[7] C.F. Ba, A.A. Mc, M.Á. Omar, Copper: Synthesis techniques in nanoscale and powerful application as an antimicrobial agent, J. Nanomater. (2015).

Google Scholar

[8] K. Kairyte, A. Kadys, Z. Luksiene, Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension, J. Photoch. Photobio. 128 (2013) 78-84.

DOI: 10.1016/j.jphotobiol.2013.07.017

Google Scholar

[9] K. Dědková, B. Janíková, K. Matějová, K. Čabanová, R. Váňa, A. Kalup, M. Hundáková, J. Kukutschová, ZnO/graphite composites and its antibacterial activity at different conditions, J. Photoch. Photobio. 151 (2015) 256-263.

DOI: 10.1016/j.jphotobiol.2015.08.017

Google Scholar

[10] M. Li, G. Li, J. Jiang, Z.S. Zhang, X. Dai, K.C. Mai, Ultraviolet resistance and antimicrobial properties of ZnO in the polypropylene materials: a review, J. Mater. Sci-Mater El. 31 (2015) 331-339.

DOI: 10.1016/j.jmst.2014.11.022

Google Scholar

[11] T.D. Fornes, D.R. Paul. Crystallization behavior of nylon 6 nanocomposites, Polymer, 44 (2003) 3945-3961.

DOI: 10.1016/s0032-3861(03)00344-6

Google Scholar

[12] S. Xu, X.W. Zhao, L. Ye. Effect of heat treatment on the structure and properties of MC nylon 6, Polymer-Plast. Technol. 51 (2012) 689-695.

DOI: 10.1080/03602559.2012.661902

Google Scholar

[13] S. Liu, Y. Yu, Y. Cui, H. Zhang, Z. Mo, Isothermal and nonisothermal crystallization kinetics of nylon-11, J. Appl. Polym. Sci. 70 (1998) 2371-2380.

DOI: 10.1002/(sici)1097-4628(19981219)70:12<2371::aid-app9>3.0.co;2-4

Google Scholar

[14] B. Mu, Q.H. Wang, H.G. Wang, L.Q. Jian, Nonisothermal crystallization kinetics of nylon 66/montmorillonite nanocomposites, J. Macromol. Sci. B, 46 (2007) 1093-1104.

DOI: 10.1080/00222340701582522

Google Scholar

[15] F. Zhang, B. Wang, R. Man, Z. Peng, Isothermal crystallization kinetics of in situ Nylon 6/graphene composites by differential scanning calorimetry, Polym. Eng. Sci. 54 (2013) 1381-1388.

DOI: 10.1002/pen.23812

Google Scholar

[16] W. Weng, G. Chen, D. Wu, Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites, Polymer, 44 (2003) 8119-8132.

DOI: 10.1016/j.polymer.2003.10.028

Google Scholar

[17] Q. Jia, Z. Xiong, C. Shi, L. Zhang, X. Wang, Preparation and properties of polyamide 6 fibers prepared by the gel spinning method, J. Appl. Polym. Sci. 124 (2011) 5165–5171.

DOI: 10.1002/app.33763

Google Scholar

[18] I. Matai, A. Sachdev, P. Dubey, S. Kumar, B. Bhushan, P. Gopinath. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus, and GFP-expressing antibiotic resistant E. coli, Colloid. Surface. B, 115 (2014) 359-367.

DOI: 10.1016/j.colsurfb.2013.12.005

Google Scholar

[19] A.A. Othman, M.A. Ali, E.M.M. Ibrahim, M.A. Osman, Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method, J. Alloy. Compd. 683 (2016).

DOI: 10.1016/j.jallcom.2016.05.131

Google Scholar

[20] C. Wang, S.Y. Tsou, H.S. Lin, Brill transition of nylon-6 in electrospun nanofibers, Colloid Polym. Sci. 290 (2012) 1799-1809.

DOI: 10.1007/s00396-012-2724-9

Google Scholar

[21] J. Song, H. Zhang, M. Ren, Q. Chen, X. Sun, S. Wang, H. Zhang, Z. Mo, Crystal transition of nylon-12, 12 under drawing and annealing, Macromol. Rapid Com. 26 (2005) 487-490.

DOI: 10.1002/marc.200400549

Google Scholar

[22] Y. Wolanov, A. Y. Feldman, H. Harel, G. Marom, Amorphous and crystalline phase interaction during the Brill transition in nylon 66, Express Polym. Lett. 3 (2009) 452-457.

DOI: 10.3144/expresspolymlett.2009.55

Google Scholar

[23] M. Olivares, H. López-Valdivia, G. Vázquez-Polo, H. Carrasco, A. Alvarez-Castillo, E. Oliva, V. M. Castaño. Studies on the effects of γ-radiation on the mechanical properties of nylon 6-12 fibers, Polym. Bull. 6 (1996) 629-636.

DOI: 10.1007/bf00342456

Google Scholar

[24] J. Pepin, V. Miri, J. M. Lefebvre. New insights into the brill transition in polyamide 11 and polyamide 6, Macromolecules, 49 (2016) 564-573.

DOI: 10.1021/acs.macromol.5b01701

Google Scholar

[25] T.K. Jana, S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, K. Chatterjee, Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology, J. Colloid Interf. Sci. 4800(2016) 9-16.

DOI: 10.1016/j.jcis.2016.06.073

Google Scholar