Processability and Thermal Property of Poly(Phenylene Sulfide)/Graphene Nanoplatelets Nanocomposites and their Fibers

Article Preview

Abstract:

A new kind of functionalized graphene nanoplatelets (GNPs), poly (phenylene sulfide) (PPS) grafted GNPs (GNPs-g-PPS), have been successfully prepared by Friedel–Crafts reaction and in-situ grafting polymerization. In this paper, we produced PPS/GNPs-g-PPS and PPS/GNPs nanocomposite materials where PPS-g-GNPs and pristine GNPs acted as inorganic fillers. It was observed that PPS/GNPs-g-PPS exhibited superior spinnability due to its better compatibility and dispersibility of GNPs in the PPS matrix. Non-isothermal crystallization properties, thermal resistances and thermal stabilities were studied. The results showed that the crystallization behavior and thermal stability of PPS was strongly enhanced with only 1.0 wt.% GNPs-g-PPS added.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2246-2253

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wu, D.F.; Zhang, M; et al. Effect of epoxy resin on the thermal behaviors and viscoelastic properties of poly(phenylene sulfide). Mater. Chem. Phys. 2011, 128, 274-282.

DOI: 10.1016/j.matchemphys.2011.03.015

Google Scholar

[2] Bo, Y.; Chen, Y. M; et al. Reactive blends of poly(phenylene sulfide)/Hyperbranched poly(phenylene sulfide). Macromol. Symp. 2007, 254, 167-172.

DOI: 10.1002/masy.200750826

Google Scholar

[3] Sheng, X. Q; Gao, L. B; et al. Preparation of SiO2/PPS fiber and study of its heat-resistant properties. Adv. Mater. Res. 2011, 287-290, 2590-2597.

Google Scholar

[4] Goyal, R.K.; Mulik, U. P; et al. Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites. Mater. Chem. Phys. 2011, 128, 114-120.

DOI: 10.1016/j.matchemphys.2011.02.065

Google Scholar

[5] Naffakh, M.; Ellis, G; et al. Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles. J. Mater. Chem. 2012, 22, 1418-1425.

DOI: 10.1039/c1jm12543e

Google Scholar

[6] Diez-Pascual, A.M.; Ellis, G; et al. Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos. Part a-Appl. S. 2012, 43, 603-612.

DOI: 10.1016/j.compositesa.2011.12.026

Google Scholar

[7] Diez-Pascual, A.M.; Ellis, G; et al. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles. J. Phys. Chem. B. 2012, 116, 7959-7969.

DOI: 10.1021/jp3035314

Google Scholar

[8] Naffakh, M.; Jimenez, I; et al. Unique nucleation activity of inorganic fullerene-like WS2 nanoparticles in polyphenylene sulfide nanocomposites: isokinetic and isoconversional study of dynamic crystallization kinetics. J. Phys. Chem. B. 2009, 113, 7107-7115.

DOI: 10.1021/jp9008515

Google Scholar

[9] Naffakh, M.; Jimenez, I; et al. Use of inorganic fullerene-like WS2 to produce new high-performance polyphenylene sulfide nanocomposites: role of the nanoparticle concentration, J. Phys. Chem. B. 2009, 113, 10104-10111.

DOI: 10.1021/jp902700x

Google Scholar

[10] Naffakh, M.; Jimenez, I; et al. Unique isothermal crystallization behavior of novel polyphenylene sulfide/inorganic fullerene-like WS(2) nanocomposites, J. Phys. Chem. B. 2008, 112, 14819-14828.

DOI: 10.1021/jp8063245

Google Scholar

[11] Zhang, R.C.; Lu, Z. Y; et al. Isothermal crystallization of pure and glass fiber reinforced poly(phenylene sulfide) composites. Polym. Composite. 2009, 30, 460-466.

DOI: 10.1002/pc.20586

Google Scholar

[12] Nayak, G.C.; Ranjan, A; et al. Effect of polyphosphazene and modified carbon nanotubes on the morphological and thermo-mechanical properties of polyphenylene sulfide and liquid crystalline polymer blend system. J. Mater. Sci, 2011, 46, 7672-7680.

DOI: 10.1007/s10853-011-5745-8

Google Scholar

[13] Diez-Pascual, A.M.; Naffakh, M. Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos. Part A-Appl. S. 2013, 54, 10-19.

DOI: 10.1016/j.compositesa.2013.06.018

Google Scholar

[14] Diez-Pascual, A.M.; Naffakh, M. Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Mater. Chem. Phys. 2012, 135, 348-357.

DOI: 10.1016/j.matchemphys.2012.04.057

Google Scholar

[15] Gonzalez-Dominguez, J.M.; Martinez, M. T; et al. Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J. Mater. Chem. 2012, 22, 21285-21297.

DOI: 10.1039/c2jm35272a

Google Scholar

[16] Zhao, Y.F.; Meng, Y. Z; et al. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos. Sci. Technol. 2007, 67, 2528-2534.

DOI: 10.1016/j.compscitech.2006.12.009

Google Scholar

[17] Gu, J.W.; Zhang, Q. Y; et al., Polym. Composite. 2014, 35, 1087-1092.

Google Scholar

[18] Gu, J.W.; Zhang, Q. Y; et al. Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv. 2014, 4, 22101-22105.

DOI: 10.1039/c4ra01761g

Google Scholar

[19] Chua, C.K.; Pumera, M. Friedel-Crafts acylation on graphene. Chem. -Asian. J. 2012, 7, 1009-1012.

DOI: 10.1002/asia.201200096

Google Scholar

[20] Li, L.L.; Zhu, M. F; et al. A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide 6. Express Polym. Lett. 2014, 8, 450-457.

DOI: 10.3144/expresspolymlett.2014.48

Google Scholar

[21] Taeger, A.; Lehmann, D; et al., High Perform. Polym. 2013, 26, 188-196.

Google Scholar

[22] Allahbakhsh, A.; Kalaee, M; et al., High Perform. Polym. 2013, 25, 576-583.

Google Scholar

[23] Huang, G.; Zhang, S.; Yang, J; et al. Facile synthesis of processable aromatic polyamides containing thioether units. Polym. Int. 2013, 62, 411-418.

DOI: 10.1002/pi.4324

Google Scholar

[24] Shukla, S.; Nayak, S. K; et al. Effect of organoclays on nonisothermal crystallization kinetics of poly (trimethylene terephthalate) nanocomposite. Polym. -Plast. Technol. 2011, 50, 386-394.

DOI: 10.1080/03602559.2010.543227

Google Scholar