[1]
Wu, D.F.; Zhang, M; et al. Effect of epoxy resin on the thermal behaviors and viscoelastic properties of poly(phenylene sulfide). Mater. Chem. Phys. 2011, 128, 274-282.
DOI: 10.1016/j.matchemphys.2011.03.015
Google Scholar
[2]
Bo, Y.; Chen, Y. M; et al. Reactive blends of poly(phenylene sulfide)/Hyperbranched poly(phenylene sulfide). Macromol. Symp. 2007, 254, 167-172.
DOI: 10.1002/masy.200750826
Google Scholar
[3]
Sheng, X. Q; Gao, L. B; et al. Preparation of SiO2/PPS fiber and study of its heat-resistant properties. Adv. Mater. Res. 2011, 287-290, 2590-2597.
Google Scholar
[4]
Goyal, R.K.; Mulik, U. P; et al. Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites. Mater. Chem. Phys. 2011, 128, 114-120.
DOI: 10.1016/j.matchemphys.2011.02.065
Google Scholar
[5]
Naffakh, M.; Ellis, G; et al. Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles. J. Mater. Chem. 2012, 22, 1418-1425.
DOI: 10.1039/c1jm12543e
Google Scholar
[6]
Diez-Pascual, A.M.; Ellis, G; et al. Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos. Part a-Appl. S. 2012, 43, 603-612.
DOI: 10.1016/j.compositesa.2011.12.026
Google Scholar
[7]
Diez-Pascual, A.M.; Ellis, G; et al. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles. J. Phys. Chem. B. 2012, 116, 7959-7969.
DOI: 10.1021/jp3035314
Google Scholar
[8]
Naffakh, M.; Jimenez, I; et al. Unique nucleation activity of inorganic fullerene-like WS2 nanoparticles in polyphenylene sulfide nanocomposites: isokinetic and isoconversional study of dynamic crystallization kinetics. J. Phys. Chem. B. 2009, 113, 7107-7115.
DOI: 10.1021/jp9008515
Google Scholar
[9]
Naffakh, M.; Jimenez, I; et al. Use of inorganic fullerene-like WS2 to produce new high-performance polyphenylene sulfide nanocomposites: role of the nanoparticle concentration, J. Phys. Chem. B. 2009, 113, 10104-10111.
DOI: 10.1021/jp902700x
Google Scholar
[10]
Naffakh, M.; Jimenez, I; et al. Unique isothermal crystallization behavior of novel polyphenylene sulfide/inorganic fullerene-like WS(2) nanocomposites, J. Phys. Chem. B. 2008, 112, 14819-14828.
DOI: 10.1021/jp8063245
Google Scholar
[11]
Zhang, R.C.; Lu, Z. Y; et al. Isothermal crystallization of pure and glass fiber reinforced poly(phenylene sulfide) composites. Polym. Composite. 2009, 30, 460-466.
DOI: 10.1002/pc.20586
Google Scholar
[12]
Nayak, G.C.; Ranjan, A; et al. Effect of polyphosphazene and modified carbon nanotubes on the morphological and thermo-mechanical properties of polyphenylene sulfide and liquid crystalline polymer blend system. J. Mater. Sci, 2011, 46, 7672-7680.
DOI: 10.1007/s10853-011-5745-8
Google Scholar
[13]
Diez-Pascual, A.M.; Naffakh, M. Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos. Part A-Appl. S. 2013, 54, 10-19.
DOI: 10.1016/j.compositesa.2013.06.018
Google Scholar
[14]
Diez-Pascual, A.M.; Naffakh, M. Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Mater. Chem. Phys. 2012, 135, 348-357.
DOI: 10.1016/j.matchemphys.2012.04.057
Google Scholar
[15]
Gonzalez-Dominguez, J.M.; Martinez, M. T; et al. Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J. Mater. Chem. 2012, 22, 21285-21297.
DOI: 10.1039/c2jm35272a
Google Scholar
[16]
Zhao, Y.F.; Meng, Y. Z; et al. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos. Sci. Technol. 2007, 67, 2528-2534.
DOI: 10.1016/j.compscitech.2006.12.009
Google Scholar
[17]
Gu, J.W.; Zhang, Q. Y; et al., Polym. Composite. 2014, 35, 1087-1092.
Google Scholar
[18]
Gu, J.W.; Zhang, Q. Y; et al. Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv. 2014, 4, 22101-22105.
DOI: 10.1039/c4ra01761g
Google Scholar
[19]
Chua, C.K.; Pumera, M. Friedel-Crafts acylation on graphene. Chem. -Asian. J. 2012, 7, 1009-1012.
DOI: 10.1002/asia.201200096
Google Scholar
[20]
Li, L.L.; Zhu, M. F; et al. A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide 6. Express Polym. Lett. 2014, 8, 450-457.
DOI: 10.3144/expresspolymlett.2014.48
Google Scholar
[21]
Taeger, A.; Lehmann, D; et al., High Perform. Polym. 2013, 26, 188-196.
Google Scholar
[22]
Allahbakhsh, A.; Kalaee, M; et al., High Perform. Polym. 2013, 25, 576-583.
Google Scholar
[23]
Huang, G.; Zhang, S.; Yang, J; et al. Facile synthesis of processable aromatic polyamides containing thioether units. Polym. Int. 2013, 62, 411-418.
DOI: 10.1002/pi.4324
Google Scholar
[24]
Shukla, S.; Nayak, S. K; et al. Effect of organoclays on nonisothermal crystallization kinetics of poly (trimethylene terephthalate) nanocomposite. Polym. -Plast. Technol. 2011, 50, 386-394.
DOI: 10.1080/03602559.2010.543227
Google Scholar