Effect of Draw Ratio on the Microstructure of Silk Fibroin/Graphene Oxide Hybrid Fibers

Article Preview

Abstract:

In order to fabricate high performance artificial silk, hybrid fibers were dry spun from regenerated silk fibroin (RSF) aqueous solution mixed with graphene oxide (GO) nanosheets. The influence of draw ratio on the microstructure and mechanical properties of RSF/GO hybrid fibers was studied through Fourier transform infrared spectroscopy (FT-IR), synchrotron radiation wide-angle X-ray diffraction, Raman spectroscopy and mechanical testing. The results showed that with increasing draw ratio, both amorphous phase and mesophase of the dry-spun artificial fiber gradually converted to crystals. The orientation of crystals and mesophase changed slightly at low draw ratio, but increased significantly at draw ratios of 3 and 4X. The β-sheet content of silk fibroin and the disorder degree of GO sheets in the fibers also increased with the increase of draw ratio. The initial modulus, breaking strength and breaking energy of the hybrid fibers achieved great improvement at a draw ratio of 4X. The structure evolution of the RSF/GO hybrid fibers may benefit the understanding of the structure-property relationship of other composite fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2214-2223

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Z. Shao and F. Vollrath, Materials: Surprising strength of silkworm silk, Nature, 418 (2002), 741-741.

DOI: 10.1038/418741a

Google Scholar

[2] F. Vollrath, D. Porter and C. Holland, There are many more lessons still to be learned from spider silks, Soft Matter, 7 (2011), 9595-9600.

DOI: 10.1039/c1sm05812f

Google Scholar

[3] C. Vepari and D. L. Kaplan, Silk as a biomaterial, Prog. Polym. Sci., 32 (2007), 991-1007.

Google Scholar

[4] J. Magoshi, Y. Magoshi and S. Nakamura, Crystallization, liquid-crystal, and fiber formation of silk fibroin, Applied Polymer Symposia(1985), 187-204.

Google Scholar

[5] Y. Z. Wang, H. J. Kim, G. Vunjak-Novakovic and D. L. Kaplan, Stem cell-based tissue engineering with silk biomaterials, Biomaterials, 27 (2006), 6064-6082.

DOI: 10.1016/j.biomaterials.2006.07.008

Google Scholar

[6] A. U. Ude, R. A. Eshkoor, R. Zulkifili, A. K. Ariffin, A. W. Dzuraidah and C. H. Azhari, Bombyx mori silk fibre and its composite: A review of contemporary developments, Mater. Des., 57 (2014), 298-305.

DOI: 10.1016/j.matdes.2013.12.052

Google Scholar

[7] C. Viney, Natural silks: archetypal supramolecular assembly of polymer fibres, Supramol. Sci., 4 (1997), 75-81.

DOI: 10.1016/s0968-5677(96)00059-4

Google Scholar

[8] A. Yaari, Y. Schilt, C. Tamburu, U. Raviv and O. Shoseyov, Wet Spinning and Drawing of Human Recombinant Collagen, ACS Biomater. Sci. Eng., 2 (2016), 349-360.

DOI: 10.1021/acsbiomaterials.5b00461

Google Scholar

[9] J. P. Anderson, Morphology and crystal structure of a recombinant silk-like molecule, SLP4, Biopolymers, 45 (1998), 307-321.

DOI: 10.1002/(sici)1097-0282(19980405)45:4<307::aid-bip5>3.0.co;2-p

Google Scholar

[10] M. J. Sun, Y. P. Zhang, Y. M. Zhao, H. L. Shao and X. C. Hu, The structure-property relationships of artificial silk fabricated by dry-spinning process, J. Mater. Chem., 22 (2012), 18372-18379.

DOI: 10.1039/c2jm32576d

Google Scholar

[11] W. Wei, Y. P. Zhang, Y. M. Zhao, J. Luo, H. L. Shao and X. C. Hu, Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution, Mater. Sci. Eng. C-Mater. Biol. Appl., 31 (2011), 1602-1608.

DOI: 10.1016/j.msec.2011.07.013

Google Scholar

[12] W. Wei, Y. P. Zhang, Y. M. Zhao, H. L. Shao and X. C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method, Mater. Des., 36 (2012), 816-822.

DOI: 10.1016/j.matdes.2011.01.060

Google Scholar

[13] I. C. Um, C. S. Ki, H. Y. Kweon, K. G. Lee, D. W. Ihm and Y. H. Park, Wet spinning of silk polymer - II. Effect of drawing on the structural characteristics and properties of filament, Int. J. Biol. Macromol., 34 (2004), 107-119.

DOI: 10.1016/j.ijbiomac.2004.03.011

Google Scholar

[14] K. Numata, H. Masunaga, T. Hikima, S. Sasaki, K. Sekiyama and M. Takata, Use of extension-deformation-based crystallisation of silk fibres to differentiate their functions in nature, Soft Matter, 11 (2015), 6335-6342.

DOI: 10.1039/c5sm00757g

Google Scholar

[15] J. Sirichaisit, V. L. Brookes, R. J. Young and F. Vollrath, Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman Spectroscopy, Biomacromolecules, 4 (2003), 387-394.

DOI: 10.1021/bm0256956

Google Scholar

[16] X. Hu, D. Kaplan and P. Cebe, Dynamic protein-water relationships during beta-sheet formation, Macromolecules, 41 (2008), 3939-3948.

DOI: 10.1021/ma071551d

Google Scholar

[17] S. A. Fossey and S. Tripathy, Atomistic modeling of interphases in spider silk fibers, Int. J. Biol. Macromol., 24 (1999), 119-125.

DOI: 10.1016/s0141-8130(98)00079-8

Google Scholar

[18] G. R. Plaza, J. Perez-Rigueiro, C. Riekel, G. B. Perea, F. Agullo-Rueda, M. Burghammer, G. V. Guinea and M. Elices, Relationship between microstructure and mechanical properties in spider silk fibers: identification of two regimes in the microstructural changes, Soft Matter, 8 (2012).

DOI: 10.1039/c2sm25446h

Google Scholar

[19] S. Sampath, T. Isdebski, J. E. Jenkins, J. V. Ayon, R. W. Henning, J. Orgel, O. Antipoa and J. L. Yarger, X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks, Soft Matter, 8 (2012).

DOI: 10.1039/c2sm25373a

Google Scholar

[20] J. Luo, Y. P. Zhang, Y. Huang, H. L. Shao and X. C. Hu, A bio-inspired microfluidic concentrator for regenerated silk fibroin solution, Sens. Actuator B-Chem., 162 (2012), 435-440.

DOI: 10.1016/j.snb.2011.12.093

Google Scholar

[21] Y. C. Hang, Y. P. Zhang, Y. Jin, H. L. Shao and X. C. Hu, Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning, Int. J. Biol. Macromol., 51 (2012), 980-986.

DOI: 10.1016/j.ijbiomac.2012.08.010

Google Scholar

[22] X. Chen, Z. Z. Shao, D. P. Knight and F. Vollrath, Conformation transition kinetics of Bombyx mori silk protein, Proteins, 68 (2007), 223-231.

DOI: 10.1002/prot.21414

Google Scholar

[23] X. Chen, D. P. Knight and Z. Z. Shao, beta-turn formation during the conformation transition in silk fibroin, Soft Matter, 5 (2009), 2777-2781.

DOI: 10.1039/b900908f

Google Scholar

[24] S. J. Ling, Z. M. Qi, D. P. Knight, Z. Z. Shao and X. Chen, Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers, Biomacromolecules, 12 (2011), 3344-3349.

DOI: 10.1021/bm2006032

Google Scholar

[25] H. J. Kim and I. C. Um, Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk, Int. J. Biol. Macromol., 67 (2014), 387-393.

DOI: 10.1016/j.ijbiomac.2014.03.055

Google Scholar

[26] T. Y. Yu and G. X. Li, A Model of The Fibrillization Mechanism of Silk Fibroin- The Conformational Transition of Fibroin by Stretching, Acta Polym. Sin., 41 (1993), 415-422.

Google Scholar

[27] H. Pan, Y. P. Zhang, H. L. Shao, X. C. Hu, X. H. Li, F. Tian and J. Wang, Nanoconfined crystallites toughen artificial silk, J. Mat. Chem. B, 2 (2014), 1408-1414.

DOI: 10.1039/c3tb21148g

Google Scholar

[28] J. Luo, L. L. Zhang, Q. F. Peng, M. J. Sun, Y. P. Zhang, H. L. Shao and X. C. Hu, Tough silk fibers prepared in air using a biomimetic microfluidic chip, Int. J. Biol. Macromol., 66 (2014), 319-324.

DOI: 10.1016/j.ijbiomac.2014.02.049

Google Scholar

[29] G. Q. Fang, Z. K. Zheng, J. R. Yao, M. Chen, Y. Z. Tang, J. J. Zhong, Z. M. Qi, Z. Li, Z. Z. Shao and X. Chen, Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks, J. Mat. Chem. B, 3 (2015), 3940-3947.

DOI: 10.1039/c5tb00448a

Google Scholar

[30] I. C. Um, H. Y. Kweon, Y. H. Park and S. Hudson, Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, Int. J. Biol. Macromol., 29 (2001), 91-97.

DOI: 10.1016/s0141-8130(01)00159-3

Google Scholar

[31] Y. Shen, M. A. Johnson and D. C. Martin, Microstructural characterization of Bombyx mori silk fibers, Macromolecules, 31 (1998), 8857-8864.

DOI: 10.1021/ma980281j

Google Scholar

[32] Y. Takahashi, M. Gehoh and K. Yuzuriha, Structure refinement and diffuse streak scattering of silk (Bombyx mori), Int. J. Biol. Macromol., 24 (1999), 127-138.

DOI: 10.1016/s0141-8130(98)00080-4

Google Scholar

[33] L. F. Drummy, D. M. Phillips, M. O. Stone, B. L. Farmer and R. R. Naik, Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films, Biomacromolecules, 6 (2005), 3328-3333.

DOI: 10.1021/bm0503524

Google Scholar

[34] A. H. Simmons, C. A. Michal and L. W. Jelinski, Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk, Science, 271 (1996), 84-87.

DOI: 10.1126/science.271.5245.84

Google Scholar

[35] N. Du, X. Y. Liu, J. Narayanan, L. A. Li, M. L. M. Lim and D. Q. Li, Design of superior spider silk: From nanostructure to mechanical properties, Biophys. J., 91 (2006), 4528-4535.

DOI: 10.1529/biophysj.106.089144

Google Scholar

[36] L. F. Drummy, B. L. Farmer and R. R. Naik, Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence, Soft Matter, 3 (2007), 877-882.

DOI: 10.1039/b701220a

Google Scholar

[37] D. T. Grubb and L. W. Jelinski, Fiber morphology of spider silk: The effects of tensile deformation, Macromolecules, 30 (1997), 2860-2867.

DOI: 10.1021/ma961293c

Google Scholar

[38] L. Y. Cai, H. L. Shao, X. C. Hu and Y. P. Zhang, Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles, ACS Sustain. Chem. Eng., 3 (2015), 2551-2557.

DOI: 10.1021/acssuschemeng.5b00749

Google Scholar

[39] C. Zhang, Y. P. Zhang, H. L. Shao and X. C. Hu, Hybrid Silk Fibers' Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions, ACS Appl. Mater. Inter., 8 (2016), 3349-3358.

DOI: 10.1021/acsami.5b11245

Google Scholar

[40] S. Bose, T. Kuila, M. E. Uddin, N. H. Kim, A. K. T. Lau and J. H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites, Polymer, 51 (2010), 5921-5928.

DOI: 10.1016/j.polymer.2010.10.014

Google Scholar

[41] J. Gao, F. Liu, Y. L. Liu, N. Ma, Z. Q. Wang and X. Zhang, Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid, Chem. Mater., 22 (2010), 2213-2218.

DOI: 10.1021/cm902635j

Google Scholar

[42] X. J. Shen, Y. Liu, H. M. Xiao, Q. P. Feng, Z. Z. Yu and S. Y. Fu, The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins, Compos. Sci. Technol., 72 (2012), 1581-1587.

DOI: 10.1016/j.compscitech.2012.06.021

Google Scholar

[43] D. E. Chung and I. C. Um, Effect of Molecular Weight and Concentration on Crystallinity and Post Drawing of Wet Spun Silk Fibroin Fiber, Fiber. Polym., 15 (2014), 153-160.

DOI: 10.1007/s12221-014-0153-8

Google Scholar

[44] Y. Jin, Y. P. Zhang, Y. C. Hang, H. L. Shao and X. C. Hu, A simple process for dry spinning of regenerated silk fibroin aqueous solution, J. Mater. Res., 28 (2013), 2897-2902.

DOI: 10.1557/jmr.2013.276

Google Scholar