[1]
Z. Z. Shao and F. Vollrath, Materials: Surprising strength of silkworm silk, Nature, 418 (2002), 741-741.
DOI: 10.1038/418741a
Google Scholar
[2]
F. Vollrath, D. Porter and C. Holland, There are many more lessons still to be learned from spider silks, Soft Matter, 7 (2011), 9595-9600.
DOI: 10.1039/c1sm05812f
Google Scholar
[3]
C. Vepari and D. L. Kaplan, Silk as a biomaterial, Prog. Polym. Sci., 32 (2007), 991-1007.
Google Scholar
[4]
J. Magoshi, Y. Magoshi and S. Nakamura, Crystallization, liquid-crystal, and fiber formation of silk fibroin, Applied Polymer Symposia(1985), 187-204.
Google Scholar
[5]
Y. Z. Wang, H. J. Kim, G. Vunjak-Novakovic and D. L. Kaplan, Stem cell-based tissue engineering with silk biomaterials, Biomaterials, 27 (2006), 6064-6082.
DOI: 10.1016/j.biomaterials.2006.07.008
Google Scholar
[6]
A. U. Ude, R. A. Eshkoor, R. Zulkifili, A. K. Ariffin, A. W. Dzuraidah and C. H. Azhari, Bombyx mori silk fibre and its composite: A review of contemporary developments, Mater. Des., 57 (2014), 298-305.
DOI: 10.1016/j.matdes.2013.12.052
Google Scholar
[7]
C. Viney, Natural silks: archetypal supramolecular assembly of polymer fibres, Supramol. Sci., 4 (1997), 75-81.
DOI: 10.1016/s0968-5677(96)00059-4
Google Scholar
[8]
A. Yaari, Y. Schilt, C. Tamburu, U. Raviv and O. Shoseyov, Wet Spinning and Drawing of Human Recombinant Collagen, ACS Biomater. Sci. Eng., 2 (2016), 349-360.
DOI: 10.1021/acsbiomaterials.5b00461
Google Scholar
[9]
J. P. Anderson, Morphology and crystal structure of a recombinant silk-like molecule, SLP4, Biopolymers, 45 (1998), 307-321.
DOI: 10.1002/(sici)1097-0282(19980405)45:4<307::aid-bip5>3.0.co;2-p
Google Scholar
[10]
M. J. Sun, Y. P. Zhang, Y. M. Zhao, H. L. Shao and X. C. Hu, The structure-property relationships of artificial silk fabricated by dry-spinning process, J. Mater. Chem., 22 (2012), 18372-18379.
DOI: 10.1039/c2jm32576d
Google Scholar
[11]
W. Wei, Y. P. Zhang, Y. M. Zhao, J. Luo, H. L. Shao and X. C. Hu, Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution, Mater. Sci. Eng. C-Mater. Biol. Appl., 31 (2011), 1602-1608.
DOI: 10.1016/j.msec.2011.07.013
Google Scholar
[12]
W. Wei, Y. P. Zhang, Y. M. Zhao, H. L. Shao and X. C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method, Mater. Des., 36 (2012), 816-822.
DOI: 10.1016/j.matdes.2011.01.060
Google Scholar
[13]
I. C. Um, C. S. Ki, H. Y. Kweon, K. G. Lee, D. W. Ihm and Y. H. Park, Wet spinning of silk polymer - II. Effect of drawing on the structural characteristics and properties of filament, Int. J. Biol. Macromol., 34 (2004), 107-119.
DOI: 10.1016/j.ijbiomac.2004.03.011
Google Scholar
[14]
K. Numata, H. Masunaga, T. Hikima, S. Sasaki, K. Sekiyama and M. Takata, Use of extension-deformation-based crystallisation of silk fibres to differentiate their functions in nature, Soft Matter, 11 (2015), 6335-6342.
DOI: 10.1039/c5sm00757g
Google Scholar
[15]
J. Sirichaisit, V. L. Brookes, R. J. Young and F. Vollrath, Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman Spectroscopy, Biomacromolecules, 4 (2003), 387-394.
DOI: 10.1021/bm0256956
Google Scholar
[16]
X. Hu, D. Kaplan and P. Cebe, Dynamic protein-water relationships during beta-sheet formation, Macromolecules, 41 (2008), 3939-3948.
DOI: 10.1021/ma071551d
Google Scholar
[17]
S. A. Fossey and S. Tripathy, Atomistic modeling of interphases in spider silk fibers, Int. J. Biol. Macromol., 24 (1999), 119-125.
DOI: 10.1016/s0141-8130(98)00079-8
Google Scholar
[18]
G. R. Plaza, J. Perez-Rigueiro, C. Riekel, G. B. Perea, F. Agullo-Rueda, M. Burghammer, G. V. Guinea and M. Elices, Relationship between microstructure and mechanical properties in spider silk fibers: identification of two regimes in the microstructural changes, Soft Matter, 8 (2012).
DOI: 10.1039/c2sm25446h
Google Scholar
[19]
S. Sampath, T. Isdebski, J. E. Jenkins, J. V. Ayon, R. W. Henning, J. Orgel, O. Antipoa and J. L. Yarger, X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks, Soft Matter, 8 (2012).
DOI: 10.1039/c2sm25373a
Google Scholar
[20]
J. Luo, Y. P. Zhang, Y. Huang, H. L. Shao and X. C. Hu, A bio-inspired microfluidic concentrator for regenerated silk fibroin solution, Sens. Actuator B-Chem., 162 (2012), 435-440.
DOI: 10.1016/j.snb.2011.12.093
Google Scholar
[21]
Y. C. Hang, Y. P. Zhang, Y. Jin, H. L. Shao and X. C. Hu, Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning, Int. J. Biol. Macromol., 51 (2012), 980-986.
DOI: 10.1016/j.ijbiomac.2012.08.010
Google Scholar
[22]
X. Chen, Z. Z. Shao, D. P. Knight and F. Vollrath, Conformation transition kinetics of Bombyx mori silk protein, Proteins, 68 (2007), 223-231.
DOI: 10.1002/prot.21414
Google Scholar
[23]
X. Chen, D. P. Knight and Z. Z. Shao, beta-turn formation during the conformation transition in silk fibroin, Soft Matter, 5 (2009), 2777-2781.
DOI: 10.1039/b900908f
Google Scholar
[24]
S. J. Ling, Z. M. Qi, D. P. Knight, Z. Z. Shao and X. Chen, Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers, Biomacromolecules, 12 (2011), 3344-3349.
DOI: 10.1021/bm2006032
Google Scholar
[25]
H. J. Kim and I. C. Um, Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk, Int. J. Biol. Macromol., 67 (2014), 387-393.
DOI: 10.1016/j.ijbiomac.2014.03.055
Google Scholar
[26]
T. Y. Yu and G. X. Li, A Model of The Fibrillization Mechanism of Silk Fibroin- The Conformational Transition of Fibroin by Stretching, Acta Polym. Sin., 41 (1993), 415-422.
Google Scholar
[27]
H. Pan, Y. P. Zhang, H. L. Shao, X. C. Hu, X. H. Li, F. Tian and J. Wang, Nanoconfined crystallites toughen artificial silk, J. Mat. Chem. B, 2 (2014), 1408-1414.
DOI: 10.1039/c3tb21148g
Google Scholar
[28]
J. Luo, L. L. Zhang, Q. F. Peng, M. J. Sun, Y. P. Zhang, H. L. Shao and X. C. Hu, Tough silk fibers prepared in air using a biomimetic microfluidic chip, Int. J. Biol. Macromol., 66 (2014), 319-324.
DOI: 10.1016/j.ijbiomac.2014.02.049
Google Scholar
[29]
G. Q. Fang, Z. K. Zheng, J. R. Yao, M. Chen, Y. Z. Tang, J. J. Zhong, Z. M. Qi, Z. Li, Z. Z. Shao and X. Chen, Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks, J. Mat. Chem. B, 3 (2015), 3940-3947.
DOI: 10.1039/c5tb00448a
Google Scholar
[30]
I. C. Um, H. Y. Kweon, Y. H. Park and S. Hudson, Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, Int. J. Biol. Macromol., 29 (2001), 91-97.
DOI: 10.1016/s0141-8130(01)00159-3
Google Scholar
[31]
Y. Shen, M. A. Johnson and D. C. Martin, Microstructural characterization of Bombyx mori silk fibers, Macromolecules, 31 (1998), 8857-8864.
DOI: 10.1021/ma980281j
Google Scholar
[32]
Y. Takahashi, M. Gehoh and K. Yuzuriha, Structure refinement and diffuse streak scattering of silk (Bombyx mori), Int. J. Biol. Macromol., 24 (1999), 127-138.
DOI: 10.1016/s0141-8130(98)00080-4
Google Scholar
[33]
L. F. Drummy, D. M. Phillips, M. O. Stone, B. L. Farmer and R. R. Naik, Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films, Biomacromolecules, 6 (2005), 3328-3333.
DOI: 10.1021/bm0503524
Google Scholar
[34]
A. H. Simmons, C. A. Michal and L. W. Jelinski, Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk, Science, 271 (1996), 84-87.
DOI: 10.1126/science.271.5245.84
Google Scholar
[35]
N. Du, X. Y. Liu, J. Narayanan, L. A. Li, M. L. M. Lim and D. Q. Li, Design of superior spider silk: From nanostructure to mechanical properties, Biophys. J., 91 (2006), 4528-4535.
DOI: 10.1529/biophysj.106.089144
Google Scholar
[36]
L. F. Drummy, B. L. Farmer and R. R. Naik, Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence, Soft Matter, 3 (2007), 877-882.
DOI: 10.1039/b701220a
Google Scholar
[37]
D. T. Grubb and L. W. Jelinski, Fiber morphology of spider silk: The effects of tensile deformation, Macromolecules, 30 (1997), 2860-2867.
DOI: 10.1021/ma961293c
Google Scholar
[38]
L. Y. Cai, H. L. Shao, X. C. Hu and Y. P. Zhang, Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles, ACS Sustain. Chem. Eng., 3 (2015), 2551-2557.
DOI: 10.1021/acssuschemeng.5b00749
Google Scholar
[39]
C. Zhang, Y. P. Zhang, H. L. Shao and X. C. Hu, Hybrid Silk Fibers' Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions, ACS Appl. Mater. Inter., 8 (2016), 3349-3358.
DOI: 10.1021/acsami.5b11245
Google Scholar
[40]
S. Bose, T. Kuila, M. E. Uddin, N. H. Kim, A. K. T. Lau and J. H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites, Polymer, 51 (2010), 5921-5928.
DOI: 10.1016/j.polymer.2010.10.014
Google Scholar
[41]
J. Gao, F. Liu, Y. L. Liu, N. Ma, Z. Q. Wang and X. Zhang, Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid, Chem. Mater., 22 (2010), 2213-2218.
DOI: 10.1021/cm902635j
Google Scholar
[42]
X. J. Shen, Y. Liu, H. M. Xiao, Q. P. Feng, Z. Z. Yu and S. Y. Fu, The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins, Compos. Sci. Technol., 72 (2012), 1581-1587.
DOI: 10.1016/j.compscitech.2012.06.021
Google Scholar
[43]
D. E. Chung and I. C. Um, Effect of Molecular Weight and Concentration on Crystallinity and Post Drawing of Wet Spun Silk Fibroin Fiber, Fiber. Polym., 15 (2014), 153-160.
DOI: 10.1007/s12221-014-0153-8
Google Scholar
[44]
Y. Jin, Y. P. Zhang, Y. C. Hang, H. L. Shao and X. C. Hu, A simple process for dry spinning of regenerated silk fibroin aqueous solution, J. Mater. Res., 28 (2013), 2897-2902.
DOI: 10.1557/jmr.2013.276
Google Scholar