Gamma Irradiation Assisted Synthesis of Ag/rGO Composites and their Surface Properties

Article Preview

Abstract:

Ag/rGO composites were synthesized under gamma irradiation using silver nitrate and graphene oxide (GO) as the starting materials. Comparing with traditional methods, gamma irradiation is a simple and “green” technique. In the irradiation system, silver ions were reduced to silver nanoparticles (AgNPs) by the electrons generated from the radiolysis of solvent. GO nanosheets provided reactive sites for the formation of AgNPs and acted as a colloidal surfactant preventing the aggregation of AgNPs. Meanwhile, GO were partially reduced to reduced graphene oxide (rGO). X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, Raman spectra and UV-Vis absorption spectra were applied for the characterization of Ag/rGO composites. The results showed that the absorbed dose (3.1 kGy, 4.7 kGy, 9.4 kGy and 27.4 kGy) plays an important role in the size distribution of AgNPs and the reduction degree of GO nanosheetes. The Ag/rGO composites exhibit a broad absorption band at visible light due to the surface plasmon resonance of AgNPs. Because of the unique surface properties, Ag/rGO composites behave enhanced performance for the adsorption of organic dye from water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2224-2230

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[3] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[5] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100 (2008) 016602.

DOI: 10.1103/physrevlett.100.016602

Google Scholar

[6] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240.

DOI: 10.1039/b917103g

Google Scholar

[7] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[8] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, Graphene oxide sheets at interfaces, J. Am. Chem. Soc. 132 (2010) 8180-8186.

DOI: 10.1021/ja102777p

Google Scholar

[9] Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation, Chem. Commun. 46 (2010) 6099-6101.

DOI: 10.1039/c0cc01259a

Google Scholar

[10] J. Tian, S. Liu, Y. Zhang, H. Li, L. Wang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation, Inorg. Chem. 51 (2012).

DOI: 10.1021/ic300332x

Google Scholar

[11] X. Liu, X. Xu, H. Zhu, X. Yang, Synthesis of graphene nanosheets with incorporated silver nanoparticles for enzymeless hydrogen peroxide detection, Anal. Methods 5 (2013) 2298-2304.

DOI: 10.1039/c3ay26458k

Google Scholar

[12] C. Xu, X. Wang, Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates, Small 5 (2009) 2212-2217.

DOI: 10.1002/smll.200900548

Google Scholar

[13] R. Pasricha, S. Gupta, A.K. Srivastava, A facile and novel synthesis of Ag–graphene-based nanocomposites, small 5 (2009) 2253-2259.

DOI: 10.1002/smll.200900726

Google Scholar

[14] J. Shen, M. Shi, N. Li, B. Yan, H. Ma, Y. Hu, M. Ye, Facile synthesis and application of Ag-chemically converted graphene nanocomposite, Nano Res. 3 (2010) 339-349.

DOI: 10.1007/s12274-010-1037-x

Google Scholar

[15] R. Fang, X. Ge, M. Du, Z. Li, C. Yang, B. Fang, Y. Liang, Preparation of silver/graphene/polymer hybrid microspheres and the study of photocatalytic degradation, Colloid Polym. Sci. 292 (2014) 985-990.

DOI: 10.1007/s00396-013-3148-x

Google Scholar

[16] Y. Wang, J. Liu, L. Liu, D.D. Sun, High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid, Nanoscale Res. Lett. 6 (2011) 241-248.

DOI: 10.1186/1556-276x-6-241

Google Scholar

[17] S. Wang, Y. Zhang, H.L. Ma, Q. Zhang, W. Xu, J. Peng, J. Li, Z.Z. Yu, M. Zhai, Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation, Carbon 55 (2013) 245-252.

DOI: 10.1016/j.carbon.2012.12.033

Google Scholar

[18] D.C. Marcano, D.V. Kosynkin, J.M. Beilin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[19] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007) 47-57.

DOI: 10.1016/j.ssc.2007.03.052

Google Scholar

[20] B. Krauss, T. Lohmann, D.H. Chae, M. Haluska, K. von Klitzing, J.H. Smet, Laser-induced disassembly of a graphene single crystal into a nanocrystalline network, Phys. Rev. B: Condens. Matter Mater. Phys. 79 (2009) 165428.

DOI: 10.1103/physrevb.79.165428

Google Scholar