Continuous Production of Hollow Hydrogel Fibers with Graphene Inner Wall

Article Preview

Abstract:

Hydrogel fiber with spatiotemporal properties such as great aspect ratio, large surface area/volume ratio, orientation and knittability, has been considered as the potential application materials in the field of biomedicine area. On the basis of dynamic-crosslinking-spinning we reported before, a novel GO/PEG-PEGDA core-sheath hydrogel fiber was fabricated continuously. Moreover, uniform rGO-PEGDA hollow fiber was obtain after reduction process. The diameter of core and sheath can be controlled separately by adjusting extrusion rate of core solution and sheath solution, respectively. This novel series GO hybrid hydrogel fibers with core-shell or hollow structure have potential application on nerve and muscle tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2197-2204

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Biomaterials, 30 (2009) 4325-4335.

Google Scholar

[2] T. Yue, M. Nakajima, M. Takeuchi, C. Hu, Q. Huang, T. Fukuda, Lab on a Chip, 14 (2014) 1151-1161.

Google Scholar

[3] X.H. Zong, H. Bien, C.Y. Chung, L.H. Yin, D.F. Fang, B.S. Hsiao, B. Chu, E. Entcheva, Biomaterials, 26 (2005) 5330-5338.

DOI: 10.1016/j.biomaterials.2005.01.052

Google Scholar

[4] J. Gerardo-Nava, D. Hodde, I. Katona, A. Bozkurt, T. Grehl, H.W.M. Steinbusch, J. Weis, G.A. Brook, Biomaterials, 35 (2014) 4288-4296.

DOI: 10.1016/j.biomaterials.2014.02.007

Google Scholar

[5] C. Gumera, B. Rauck, Y. Wang, Journal of Materials Chemistry, 21 (2011) 7033-7051.

Google Scholar

[6] J. Wu, N. Wang, Y. Zhao, L. Jiang, Journal of Materials Chemistry A, 1 (2013) 7290-7305.

Google Scholar

[7] T. Takei, Z. Kitazono, Y. Ozuno, T. Yoshinaga, H. Nishimata, M. Yoshida, Journal of Bioscience and Bioengineering, 121 (2016) 336-340.

DOI: 10.1016/j.jbiosc.2015.06.018

Google Scholar

[8] X. Jingwei, M.R. MacEwan, S.M. Willerth, L. Xiaoran, D.W. Moran, S.E. Sakiyama-Elbert, X. Younan, Adv. Funct. Mater., 19 (2009) 2312-2318.

DOI: 10.1002/adfm.200801904

Google Scholar

[9] Y. Wang, F. Qi, S. Zhu, Z. Ye, T. Ma, X. Hu, J. Huang, Z. Luo, A synthetic oxygen carrier in fibrin matrices promotes sciatic nerve regeneration in rats, Acta Biomaterialia, 9 (2013) 7248-7263.

DOI: 10.1016/j.actbio.2013.03.024

Google Scholar

[10] V. Guarino, M.A. Alvarez-Perez, A. Borriello, T. Napolitano, L. Ambrosio, Advanced Healthcare Materials, 2 (2013) 218-227.

DOI: 10.1002/adhm.201200152

Google Scholar

[11] G. Perale, F. Rossi, M. Santoro, M. Peviani, S. Papa, D. Llupi, P. Torriani, E. Micotti, S. Previdi, L. Cervo, E. Sundstrom, A.R. Boccaccini, M. Masi, G. Forloni, P. Veglianese, Journal of Controlled Release, 159 (2012) 271-280.

DOI: 10.1016/j.jconrel.2011.12.025

Google Scholar

[12] M. Akbari, A. Tamayol, V. Laforte, N. Annabi, A.H. Najafabadi, A. Khademhosseini, D. Juncker, Adv. Funct. Mater., 24 (2014) 4060-4067.

DOI: 10.1002/adfm.201303655

Google Scholar

[13] H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Y.T. Matsunaga, Y. Shimoyama, S. Takeuchi, Nature Materials, 12 (2013) 584-590.

DOI: 10.1038/nmat3606

Google Scholar

[14] F. Dini, G. Barsotti, D. Puppi, A. Coli, A. Briganti, E. Giannessi, V. Miragliotta, C. Mota, A. Pirosa, M.R. Stornelli, P. Gabellieri, F. Carlucci, F. Chiellini, Tailored star poly (epsilon-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects, Journal of Bioactive and Compatible Polymers, 31 (2016).

DOI: 10.1177/0883911515597928

Google Scholar

[15] Q. Yimin, The gel swelling properties of alginate fibers and their applications in wound management, Polymers for Advanced Technologies, 19 (2008) 6-14.

DOI: 10.1002/pat.960

Google Scholar

[16] M.A. Daniele, D.A. Boyd, A.A. Adams, F.S. Ligler, Microfluidic Strategies for Design and Assembly of Microfibers and Nanofibers with Tissue Engineering and Regenerative Medicine Applications, Advanced Healthcare Materials, 4 (2015) 18.

DOI: 10.1002/adhm.201400144

Google Scholar

[17] K. Hou, H. Wang, Y. Lin, S. Chen, S. Yang, Y. Cheng, B.S. Hsiao, M. Zhu, Large Scale Macromolecular Rapid Communications, 37 (2016) 1765-1801.

Google Scholar

[18] S. Chen, W. Ma, Y. Cheng, Z. Weng, B. Sun, L. Wang, W. Chen, F. Li, M. Zhu, H. -M. Cheng, Nano Energy, 15 (2015) 642-653.

DOI: 10.1016/j.nanoen.2015.05.004

Google Scholar

[19] A. Mirabedini, J. Foroughi, T. Romeo, G.G. Wallace, Development and Characterization of Novel Hybrid Hydrogel Fibers, Macromolecular Materials and Engineering, 300 (2015) 1217-1225.

DOI: 10.1002/mame.201500152

Google Scholar

[20] C. Hou, Q. Zhang, Y. Li, H. Wang, Graphene-polymer hydrogels with stimulus-sensitive volume changes, Carbon, 50 (2012) 1959-(1965).

DOI: 10.1016/j.carbon.2011.12.049

Google Scholar

[21] D.O. Corrigan, A.M. Healy, O.I. Corrigan, International Journal of Pharmaceutics, 235 (2002) 193-205.

Google Scholar

[22] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical review B, 61 (2000) 14095.

DOI: 10.1103/physrevb.61.14095

Google Scholar