[1]
J.M. García, F.C. García, F. Serna, J. Pena, High-performance aromatic polyamides, Prog. Polym. Sci., 35(2010)623–686.
Google Scholar
[2]
Yogesh.S. Deshmukh, Carolus H.R.M. Wilsens, RenéVerhoef, Michael Ryan Hansen, Dmytro Dudenko, Robert Graf, Enno A. Klop and Sanjay Rastog, Conformational and Structural Changes with Increasing Methylene Segment Length in Aromatic−Aliphatic Polyamides, Macromol., 49 (2016).
DOI: 10.1021/acs.macromol.5b01747
Google Scholar
[3]
M. Monleo´n Pradas, G. Schaber, J.L. Go´mez Ribelles and F. Romero Colomer, PMMA/PPTA Microcomposites, Macromol., 30 (1997) 3612-3619.
DOI: 10.1021/ma9603847
Google Scholar
[4]
Y. Wu, G.C. Tesoro, Chemical modification of Kevlar fiber surfaces and of model diamides, J. Appl. Polym. Sci., 31(1986)1041-1059.
DOI: 10.1002/app.1986.070310406
Google Scholar
[5]
M. Takayanagi, K. Goto, Preparation and properties of graft and block copolymers of poly(p-phenylene terephthalamide) with polybutadiene, J. Appl. Polym. Sci., 29(1984)2057-(2067).
DOI: 10.1002/app.1984.070290614
Google Scholar
[6]
S. Mallakpour, Z. Rafiee. Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-l-alanine pendent group, Polym. Degrad. Stab., 93(2008)753–759.
DOI: 10.1016/j.polymdegradstab.2008.01.028
Google Scholar
[7]
Christiaan de Ruijter, Wolter F. Jager, Liangbin Li and Stephen J. Picken, Lyotropic Rod-Coil Poly(amide-block-aramid) Alternating Block Copolymers: Phase Behavior and Structure, Macromol., 39 (2006) 4411-4417.
DOI: 10.1021/ma052230+
Google Scholar
[8]
S. Du, J. Zhang, Sequence Effects on Properties of the Poly (p-phenylene terephthalamide)-based Macroinitiators and their Comb-like Copolymers Grafted by Polystyrene Side Chains, Aust. J. Chem. , 67 (2014) 39–48.
DOI: 10.1071/ch13291
Google Scholar
[9]
M.J. Yeo N.D. Gu, E.J. Jang., Synthesis and Characterization of para-Aramid Copolymers Containing Cyano Groups, Textile Sci. Eng., 51 (2014) 134-139.
DOI: 10.12772/tse.2014.51.134
Google Scholar
[10]
C. Sisbandini, H.A. Every, Spontaneous formation of hierarchical proton-conductive structures in sulfonated poly (p-phenylene terephthalamide) copolymer films, polym. Phy., 45 (2007) 666-676.
DOI: 10.1002/polb.21082
Google Scholar
[11]
Wei-ming Wang, Zai-sheng Cai, Jian-yong Yu, Study on the Chemical Modification Process of Jute Fiber, J. Eng. Fib. and Fab., 3 (2008) 1-11.
Google Scholar
[12]
Lihua Guo, Shengyu Dai, Xuelin Sui and Changle Chen, Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization, ACS Catal., 6 ( 2016) 428−441.
DOI: 10.1021/acscatal.5b02426
Google Scholar
[13]
W.P. Dijkman, D.E. Groothuis, M.W. Fraaije, Angew. Chem. Int. Ed., Enzyme-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Furan-2, 5-dicarboxylic Acid, 53 (2014) 6515–6518.
DOI: 10.1002/anie.201402904
Google Scholar
[14]
F. Koopman, N. Wierckx, J.H. deWinde and H.J. Ruijssenaars, Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, Bioresour. Technol., 101 (2010) 6291–6296.
DOI: 10.1016/j.biortech.2010.03.050
Google Scholar
[15]
C. Sievers, M.B. Valenzuela, T. Marzialetti, I. Musin, P. K. Agrawal and C. W. Jones, Ionic-liquid-phase hydrolysis of pine wood, Ind. Eng. Chem. Res., 48 (2009) 1277–1286.
DOI: 10.1021/ie801174x
Google Scholar
[16]
B. Liu, Y. Ren and Z. Zhang , Green sustainable materials for the near future, Gre. Chem., 17 (2015) 1610–1617.
Google Scholar
[17]
S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel and W.J. Koros, Chain mobility, thermal, and mechanical properties of poly (ethylene furanoate) compared to poly (ethylene terephthalate), Macromol., 47 (2014) 1383–1391.
DOI: 10.1021/ma5000199
Google Scholar
[18]
K. Luo, Y. Wang, J. Yu, J. Zhu and Z. Hu., Semi-bio-based aromatic polyamides from 2, 5-furandicarboxylic acid: toward high-performance polymers from renewable resources,RSC. ADV., 6 (2016) 87013-87020.
DOI: 10.1039/c6ra15797a
Google Scholar
[19]
B. Wu, Y. Xu, Z. Bu, L. Wu, B. Li and P. Dubois, Biobased poly(butylene 2, 5-furandicarboxylate) and poly(butylene adipate-co-butylene 2, 5-furandicarboxylate)s: From synthesis using highly purified 2, 5-furandicarboxylic acid to thermo-mechanical properties, Polym., 55 (2014).
DOI: 10.1016/j.polymer.2014.06.052
Google Scholar
[20]
Y. Jiang A.J.J. Woortman G.O.R.A. van Ekenstein D.M. Petrović and K. Loos, Enzymatic synthesis of biobased polyesters using 2, 5-bis (hydroxymethyl) furan as the building block,Biomacromol., 15 (2014) 2482−2493.
DOI: 10.1021/bm500340w
Google Scholar
[21]
M. Jiang, Q. Liu, Q. Zhang, C. Ye and G. Zhou, A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources,J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 1026–1036.
DOI: 10.1002/pola.25859
Google Scholar
[22]
D.J. Skrovanek, S.E. Howe and M.M. Coleman, Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide,Macromol., 18 (1985) 1676–1683.
DOI: 10.1021/ma00151a006
Google Scholar
[23]
R. Gheneim, C. Perez-Berumen and A. Gandini, Diels-Alder reactions with novel polymeric dienes and dienophiles: Synthesis of reversibly cross-linked elastomers, Macromol., 35 (2002) 7246-7253.
DOI: 10.1021/ma020343c
Google Scholar
[24]
Elena Dolci, Guillaume Michaud, Frédéric Simon, Bernard Boutevin, Stéphane Fouquayc and Sylvain Caillol, Remendable thermosetting polymers for isocyanate-free adhesives: a preliminary study, Polym. Chem., 6 (2015) 7851–7861.
DOI: 10.1039/c5py01213a
Google Scholar
[25]
C. Garc´ıa-Astrain, A. Gandini, C. Pena, I. Algar, A. Eceiza, M. Corcuera and N. Gabilondo, Diels–Alder click, chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels, RSC Adv., 4 (2014) 35578-35587.
DOI: 10.1039/c4ra06122e
Google Scholar