Copolymerization Modification of PPTA with 2,5-Furandicarboxylic Acid: Towards High-Performance Material with Enhanced Solubility

Article Preview

Abstract:

The preparation and characterizations of soluble copolymers poly (p-phenylene terephthamide-co-furandicarboxylic p-Phenylenediamine)(PPTA-co-PPF) by direct polycondensation was described. The chemical structure of polyamides was investigated by 1H NMR and FT-IR. The good solubility of copolymers in organic solvents was certified at room temperature. Their thermal stability and mechanical properties were observed by TGA and tensile testing and then compared with that of traditional high performance aromatic polyamides (PPTA and PMIA, for example, with trademarks of Kevlar® and Nomex®). The furan ring incorporated polyamide was expected to form thermal reversible cross-linked polymer network through D-A reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2174-2180

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. García, F.C. García, F. Serna, J. Pena, High-performance aromatic polyamides, Prog. Polym. Sci., 35(2010)623–686.

Google Scholar

[2] Yogesh.S. Deshmukh, Carolus H.R.M. Wilsens, RenéVerhoef, Michael Ryan Hansen, Dmytro Dudenko, Robert Graf, Enno A. Klop and Sanjay Rastog, Conformational and Structural Changes with Increasing Methylene Segment Length in Aromatic−Aliphatic Polyamides, Macromol., 49 (2016).

DOI: 10.1021/acs.macromol.5b01747

Google Scholar

[3] M. Monleo´n Pradas, G. Schaber, J.L. Go´mez Ribelles and F. Romero Colomer, PMMA/PPTA Microcomposites, Macromol., 30 (1997) 3612-3619.

DOI: 10.1021/ma9603847

Google Scholar

[4] Y. Wu, G.C. Tesoro, Chemical modification of Kevlar fiber surfaces and of model diamides, J. Appl. Polym. Sci., 31(1986)1041-1059.

DOI: 10.1002/app.1986.070310406

Google Scholar

[5] M. Takayanagi, K. Goto, Preparation and properties of graft and block copolymers of poly(p-phenylene terephthalamide) with polybutadiene, J. Appl. Polym. Sci., 29(1984)2057-(2067).

DOI: 10.1002/app.1984.070290614

Google Scholar

[6] S. Mallakpour, Z. Rafiee. Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-l-alanine pendent group, Polym. Degrad. Stab., 93(2008)753–759.

DOI: 10.1016/j.polymdegradstab.2008.01.028

Google Scholar

[7] Christiaan de Ruijter, Wolter F. Jager, Liangbin Li and Stephen J. Picken, Lyotropic Rod-Coil Poly(amide-block-aramid) Alternating Block Copolymers: Phase Behavior and Structure, Macromol., 39 (2006) 4411-4417.

DOI: 10.1021/ma052230+

Google Scholar

[8] S. Du, J. Zhang, Sequence Effects on Properties of the Poly (p-phenylene terephthalamide)-based Macroinitiators and their Comb-like Copolymers Grafted by Polystyrene Side Chains, Aust. J. Chem. , 67 (2014) 39–48.

DOI: 10.1071/ch13291

Google Scholar

[9] M.J. Yeo N.D. Gu, E.J. Jang., Synthesis and Characterization of para-Aramid Copolymers Containing Cyano Groups, Textile Sci. Eng., 51 (2014) 134-139.

DOI: 10.12772/tse.2014.51.134

Google Scholar

[10] C. Sisbandini, H.A. Every, Spontaneous formation of hierarchical proton-conductive structures in sulfonated poly (p-phenylene terephthalamide) copolymer films, polym. Phy., 45 (2007) 666-676.

DOI: 10.1002/polb.21082

Google Scholar

[11] Wei-ming Wang, Zai-sheng Cai, Jian-yong Yu, Study on the Chemical Modification Process of Jute Fiber, J. Eng. Fib. and Fab., 3 (2008) 1-11.

Google Scholar

[12] Lihua Guo, Shengyu Dai, Xuelin Sui and Changle Chen, Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization, ACS Catal., 6 ( 2016) 428−441.

DOI: 10.1021/acscatal.5b02426

Google Scholar

[13] W.P. Dijkman, D.E. Groothuis, M.W. Fraaije, Angew. Chem. Int. Ed., Enzyme-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Furan-2, 5-dicarboxylic Acid, 53 (2014) 6515–6518.

DOI: 10.1002/anie.201402904

Google Scholar

[14] F. Koopman, N. Wierckx, J.H. deWinde and H.J. Ruijssenaars, Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, Bioresour. Technol., 101 (2010) 6291–6296.

DOI: 10.1016/j.biortech.2010.03.050

Google Scholar

[15] C. Sievers, M.B. Valenzuela, T. Marzialetti, I. Musin, P. K. Agrawal and C. W. Jones, Ionic-liquid-phase hydrolysis of pine wood, Ind. Eng. Chem. Res., 48 (2009) 1277–1286.

DOI: 10.1021/ie801174x

Google Scholar

[16] B. Liu, Y. Ren and Z. Zhang , Green sustainable materials for the near future, Gre. Chem., 17 (2015) 1610–1617.

Google Scholar

[17] S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel and W.J. Koros, Chain mobility, thermal, and mechanical properties of poly (ethylene furanoate) compared to poly (ethylene terephthalate), Macromol., 47 (2014) 1383–1391.

DOI: 10.1021/ma5000199

Google Scholar

[18] K. Luo, Y. Wang, J. Yu, J. Zhu and Z. Hu., Semi-bio-based aromatic polyamides from 2, 5-furandicarboxylic acid: toward high-performance polymers from renewable resources,RSC. ADV., 6 (2016) 87013-87020.

DOI: 10.1039/c6ra15797a

Google Scholar

[19] B. Wu, Y. Xu, Z. Bu, L. Wu, B. Li and P. Dubois, Biobased poly(butylene 2, 5-furandicarboxylate) and poly(butylene adipate-co-butylene 2, 5-furandicarboxylate)s: From synthesis using highly purified 2, 5-furandicarboxylic acid to thermo-mechanical properties, Polym., 55 (2014).

DOI: 10.1016/j.polymer.2014.06.052

Google Scholar

[20] Y. Jiang A.J.J. Woortman G.O.R.A. van Ekenstein D.M. Petrović and K. Loos, Enzymatic synthesis of biobased polyesters using 2, 5-bis (hydroxymethyl) furan as the building block,Biomacromol., 15 (2014) 2482−2493.

DOI: 10.1021/bm500340w

Google Scholar

[21] M. Jiang, Q. Liu, Q. Zhang, C. Ye and G. Zhou, A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources,J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 1026–1036.

DOI: 10.1002/pola.25859

Google Scholar

[22] D.J. Skrovanek, S.E. Howe and M.M. Coleman, Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide,Macromol., 18 (1985) 1676–1683.

DOI: 10.1021/ma00151a006

Google Scholar

[23] R. Gheneim, C. Perez-Berumen and A. Gandini, Diels-Alder reactions with novel polymeric dienes and dienophiles: Synthesis of reversibly cross-linked elastomers, Macromol., 35 (2002) 7246-7253.

DOI: 10.1021/ma020343c

Google Scholar

[24] Elena Dolci, Guillaume Michaud, Frédéric Simon, Bernard Boutevin, Stéphane Fouquayc and Sylvain Caillol, Remendable thermosetting polymers for isocyanate-free adhesives: a preliminary study, Polym. Chem., 6 (2015) 7851–7861.

DOI: 10.1039/c5py01213a

Google Scholar

[25] C. Garc´ıa-Astrain, A. Gandini, C. Pena, I. Algar, A. Eceiza, M. Corcuera and N. Gabilondo, Diels–Alder click, chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels, RSC Adv., 4 (2014) 35578-35587.

DOI: 10.1039/c4ra06122e

Google Scholar