Effects of Poly(Ethylene Glycol) Segment on Physical and Chemical Properties of Poly(Ether Ester) Elastomers

Article Preview

Abstract:

Poly (ether ester) elastomer, a segmented copolymer, recently has attracted a wide attention for its unique properties such as elasticity, low temperature impact resistance and chemistry resistance. In this work, a range of poly (ether ester) s were synthesized via a two-step polymerization method using poly (ethylene terephthalate) (PET) as rigid segment and poly (ethylene glycol) (PEG) as flexible segment. The effects of the molecular weight (1000-8000 g/mol) and the weight ratios with PEG (30/100-70/100) of PET segments on the performance of synthetic copolymers were investigated. The chemical structure, thermal properties and hydrophilic performance of the copolymers were respectively characterized. Additionally, the practical block ratios of PEG/PET were calculated by the 1H-NMR Spectra of the copolymer after Soxhlet extraction. Through the obtained results, it revealed that increasing the molecular weight or content of PEG could enhance the hydrophilic performance of the copolymers and reversely reduce its thermal stability. It was shown that the reactivity of PEG in the polymerization process was weakened when its molecular weight was above 4000 or weight ratio with PTA was higher than 60/100, subsequently affected the practical block ratios of PEG/PET in the resulting poly(ether ester)elastomers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2147-2157

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Gogeva, S. Fakirov, J. Mishinev and L. Sarkisova, Poly(ether ester) fibres, Acta. Polym. 41(1990) 31-36.

DOI: 10.1002/actp.1990.010410108

Google Scholar

[2] A. Szymczyk, J. Nastalczyk, R.J. Sablong and Z. Roslaniec, The influence of soft segment length on structure and properties of poly(trimethylene terephthalate)-block-poly(tetramethylene oxide) segmented random copolymers, Polym. Advan. Technol. 22(2011).

DOI: 10.1002/pat.1858

Google Scholar

[3] X. Luo, X. Zhang, M. Wang, D. Ma and M. Xu, Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer, J. Appl. Polym. Sci. 64 (1997) 2433-2440.

DOI: 10.1002/(sici)1097-4628(19970620)64:12<2433::aid-app17>3.0.co;2-1

Google Scholar

[4] M.V. Vuckovic, V.V. Antic, B.P. Dojcinovic, M.N. Govedarica and J. Djonlagic, Synthesis and characterization of poly(ester ether siloxane)s, Polym. Int. 55(2006)1304-1314.

DOI: 10.1002/pi.2085

Google Scholar

[5] M. Ignatova, N. Manolova, I. Rashkov, M. Sepulchre and N. Spassky, Preparation, properties and complex formation ability of poly(ether-ester)s of poly(ethylene glycol)s and 2, 6-pyridinedicarboxylic acid, Macromol. Chem. Phys. 196(1995)2695-2708.

DOI: 10.1002/macp.1995.021960820

Google Scholar

[6] Y. Sano, W.L. Chan, Y. Kimura and T. Saegusa, Electric resistivity of hydroscopic copoly (ester-ether)s containing zwitterionic units and their utilization for antistatic modification of polyester fiber, Angew. Makromol. Chem. 242(1996)171-181.

Google Scholar

[7] V.V. Antić, M.V. Vučković, Djonlagić J, Application of reactive siloxaneprepolymers for the synthesis of thermoplastic poly(ester-siloxane)s and poly(ester-ether-siloxane)s, J. Serb. Chem. Soc. 72(2007) 139-150.

DOI: 10.2298/jsc0702139a

Google Scholar

[8] T.H. Ahn, H.P. Yun, S.H. Kim and D.H. Baik, Preparation and characterization of poly(ether ester) thermoplastic elastomers containing the 2, 6-naphthalenedicarboxyl group,J. Appl. Polym. Sci. 90(2003) 3473-3480.

DOI: 10.1002/app.13000

Google Scholar

[9] S.J. Mccarthy, G.F. Meijs, P. Gunatillake, Synthesis, characterization, and stability of poly[(alkylene oxide) ester] thermoplastic elastomers,J. Appl. Polym. Sci. 65(1997) 1319-1332.

DOI: 10.1002/(sici)1097-4628(19970815)65:7<1319::aid-app10>3.0.co;2-q

Google Scholar

[10] M. Wang, L. Zhang, Recovery as a measure of oriented crystalline structure in poly(ether ester)s based on poly(ethylene oxide) and poly(ethylene terephthalate) used as shape memory polymers,J. Polym. Sci. Pol. Phys. 37(1999) 101-112.

DOI: 10.1002/(sici)1099-0488(19990115)37:2<101::aid-polb1>3.0.co;2-x

Google Scholar

[11] N. Sarier, E. Onder, Organic phase change materials and their textile applications: an overview, Thermochim. Acta. 540 (2012) 7-60.

DOI: 10.1016/j.tca.2012.04.013

Google Scholar

[12] L. Bech, T. Elzein, T. Meylheuc, A. Ponche and M. Brogly, Atom transfer radical polymerization of styrene from different poly(ethylene terephthalate) surfaces: Films, fibers and fabrics, Eur. Polym. J. 45(2009) 246-255.

DOI: 10.1016/j.eurpolymj.2008.10.031

Google Scholar

[13] Q. Li, Y. Li, X. Li, S. Chen and S. Zhang, A facile synthesis of superparamagnetic hybrid hollow nanospheres based on monodisperse nickel-zinc ferrite/polyethylene glycol and their electromagnetic, microwave absorbing properties, J. Alloy. Compd. 608 (2014).

DOI: 10.1016/j.jallcom.2014.03.060

Google Scholar

[14] Y. Nagai, T. Ogawa, Y.Z. Liu, Y. Nishimoto and F. Ohishi, Analysis of weathering of thermoplastic polyester elastomers-I. Polyether-polyester elastomers, Polym. Degrad. Stabil. 56(1997) 115-121.

DOI: 10.1016/s0141-3910(96)00189-9

Google Scholar

[15] Y. Nagai, T. Ogawa, Y. Nishimoto and F. Ohishi, Analysis of weathering of a thermoplastic polyester elastomer II. Factors affecting weathering of a polyether–polyester elastomer, Polym. Degrad. Stabil. 65(1999) 217-224.

DOI: 10.1016/s0141-3910(99)00007-5

Google Scholar

[16] X. Li, R. Liu, L. Zhong and L. Gu, Antielectrostaticpoly(ether ester) block copolymer of poly (ethylene terephthalate-co-isophthalate)-poly(ethylene glycol),J. Appl. Polym. Sci. 89(2003)1696-1701.

DOI: 10.1002/app.12311

Google Scholar

[17] Z. Chen, Y. Liu, C. Yao and G. Yang, Crystallization behavior and morphology of double crystalline poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers, Polym. Int. 62 (2013) 219-227.

DOI: 10.1002/pi.4284

Google Scholar

[18] D.K. Gilding, A.M. Reed, Biodegradable polymers for use in surgery-poly(ethylene oxide) poly(ethylene terephthalate)(PEO/PET) copolymers: 1, Polymer. 20(1979)1454-1458.

DOI: 10.1016/0032-3861(79)90008-9

Google Scholar

[19] M. Zhao, X. Wang, J Yu, Preparation and characterization of poly(ethylene terephthalate) copolyesters modified with sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate and poly(ethylene glycol),J. Appl. Polym. Sci. 131(2014) 1082-1090.

DOI: 10.1002/app.39823

Google Scholar

[20] E.J. Tijsma, L.V.D. Does, A. Bantjes, I. Vulic and G.H.W. Buning, Poly(ether esters) from pivalolactone, alkanediols, and dimethyl terephthalate. 2. Synthesis and characterization, Macromolecules, 27(1994) 179-186.

DOI: 10.1021/ma00079a026

Google Scholar

[21] J.H. Wu, M.S. Yen, M.C. Kuo, C.P. Wu and M.T. Leu, Poly(ethylene terephthalate)/ Poly(ethylene glycol-co-1, 3/1, 4-cyclohexanedimethanolterephthalate)/Clay nanocomposites: Morphology and isothermal crystallization kinetics,J. Appl. Polym. Sci. 128(2013).

DOI: 10.1002/app.38203

Google Scholar

[22] S. Wang, C. Wang, H. Wang, X. Chen and S. Wang, Sodium titanium tris(glycolate) as a catalyst for the chemical recycling of poly(ethylene terephthalate) via glycolysis and repolycondensation, Polym. Degrad. Stabil. 114 (2015) 105-114.

DOI: 10.1016/j.polymdegradstab.2015.02.006

Google Scholar

[23] P. Ji, C. Wang, Z. Jiang and H. Wang, Influence of surface modification of zinc oxide nanoparticles on thermal behavior and hydrophilic property of PET-PEG composites, Polym. Composite. 37(2016)1830-1838.

DOI: 10.1002/pc.23357

Google Scholar

[24] N. Lotti, L. Finelli, M. Fiorini, M.C. Righetti and A. Munari, Synthesis and characterization of poly(butylene terephthalate-co-triethylene terephthalate) copolyesters,J. Appl. Polym. Sci. 81(2001) 981-990.

DOI: 10.1002/app.1520

Google Scholar

[25] M. Imran, B.K. Kim, M. Han, B.G. Cho and D.H. Kim, Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), Polym. Degrad. Stabil. 95(2010) 1686-1693.

DOI: 10.1016/j.polymdegradstab.2010.05.026

Google Scholar

[26] S. Fakirov, T. Gogeva, Poly(ether/ester)s based on poly(butylene terephthalate) and poly(ethylene glycol), 1. Poly (ether/ester) s with various polyether: polyester ratios, Angew. Makromol. Chem. 191(1990)603-614.

DOI: 10.1016/0032-3861(94)90476-6

Google Scholar

[27] P.R. Sharma, A.J. Varma, Thermal stability of cellulose and their nanoparticles: Effect of incremental increases in carboxyl and aldehyde groups, Carbohyd. Polym. 114 (2014) 339-343.

DOI: 10.1016/j.carbpol.2014.08.032

Google Scholar

[28] F. Li, X. Xu, Q. Li, Y. Li and H. Zhang, Thermal degradation and their kinetics of biodegradable poly(butylene succinate-co-butylene terephthate)s under nitrogen and air atmospheres, Polym. Degrad. Stabil. 91(2006) 1685-1693.

DOI: 10.1016/j.polymdegradstab.2005.12.005

Google Scholar

[29] Y.T. Shieh, Y.K. Twu, C.C. Su, R.H. Lin and G.L. Liu, Crystallization kinetics study of poly(L-lactic acid)/carbon nanotubes nanocomposites,J. Polym. Sci. Pol. Phys. 48(2010)983-989.

DOI: 10.1002/polb.21986

Google Scholar

[30] A. Montarsolo, A. Varesano, R. Mossotti, F. Rombaldoni andM. Periolatto, Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect, J. Appl. Polym. Sci. 126(2012)1385–1393.

DOI: 10.1002/app.36762

Google Scholar