Organic Functionalization and Properties of ZnO Nanosheets with Polymer Containing N-Vinyl Carbazole

Article Preview

Abstract:

To make full use of the visible light more effectively, many studies are focuses on ZnO baesd nanocomposites. To modify the surface of ZnO with functional polymer is a very simple and effective approach. PVK (N-vinyl carbazole polymer) is one of typical organic functional materials, which is generally used as charge transfer materials for the applications of several organic electronic devices. Surface modification of ZnO nanosheets with polymer containing –COOH and N-vinyl carbazole group was performed with self-assembly process for improving the adsorption to visible light and properties of charge transfer in nanoscale. A series of characterizations were carried out by SEM (scanning electron microscopy), Fourier-Transform Infrared (FTIR) spectra, UV-Vis (Ultra-violet visible spectroscopy), et al. The adsorption of the nanocomposite was extended to the region of visible light. The photoconductivity response to weak visible light was studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate with casting method. The photocurrent of ZnO nanosheets modified with the polymer containing N-vinyl carbazole to weak visible light was changed greatly. The organic-inorganic nanocomposite showed good activities to visible light, with which it can be easily produced photo-induced charges, avoiding the recombination of charges produced by visible light. Photocatalytic efficiency was examined by selecting typical organic pollutants and some good results were obtained, showing much prospect in the fields of photocatalysts, nanoreactors, self-cleaning films, coatings, and organic pollutants treatment of environmental.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2118-2127

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhang, F. Liu, Z. Mou, X. Liu, J. Sun and W. Lei, A facile one-step synthesis of ZnO quantum dots modified poly(triazine imide) nanosheets for enhanced hydrogen evolution under visible light, Chem. Commun. (2016), in press.

DOI: 10.1039/c6cc06970c

Google Scholar

[2] G. Li, P. Liu, R. Liu, M. Liu, K. Tao, S. Zhu, M. Wu, F. Yi and L. Han, MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors, Dalton Trans. 45(2016)13311–13316.

DOI: 10.1039/c6dt01791f

Google Scholar

[3] Z. Zhou, K. Lu, X. Wei, T. Hao, Y. Xu, X. Lv and Y. Zhang, A mesoporous fluorescent sensor based on ZnO nanorods for the fluorescent detection and selective recognition of tetracycline, RSC Adv. 6(2016)71061–71069.

DOI: 10.1039/c6ra14890e

Google Scholar

[4] S. Geng, S. Lin, S. Liu, N. Li and H. Luo, A new fluorescent sensor for detecting pnitrophenol based on b-cyclodextrin-capped ZnO quantum dots, RSC Adv. 6(2016) 86061–86067.

DOI: 10.1039/c6ra17378k

Google Scholar

[5] H. B. Balkhoyor, M. M. Rahman and A. M. Asiri, Effect of Ce doping into ZnO nanostructures to enhance the phenolic sensor performance, RSC Adv. 6(2016)58236–58246.

DOI: 10.1039/c6ra10863f

Google Scholar

[6] M. Tak, V. Guptaa and M. Tomar, A ZnO–CNT nanocomposite based electrochemical DNA biosensor for meningitis detection, RSC Adv. 6(2016)76214–76222.

DOI: 10.1039/c6ra12453d

Google Scholar

[7] R. Madhu, V. Veeramani, S. Chen, P. Veerakumar, S. Liu and N. Miyamoto, Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications, Phys. Chem. Chem. Phys. 18(2016)16466-16475.

DOI: 10.1039/c6cp01285j

Google Scholar

[8] E. Asadian, S. Shahrokhian and A. I. Zad, Hierarchical core–shell structure of ZnO nanotube/MnO2 nanosheet arrays on a 3D graphene network as a high performance biosensing platform, RSC Adv. 6(2016)61190–61199.

DOI: 10.1039/c6ra07197j

Google Scholar

[9] J. Park, J. Lee, Y. Noh, K. Shinbc and D. Lee, Flexible ultraviolet photodetectors with ZnO nanowire networks fabricated by large area controlled roll-to-roll processing, J. Mater. Chem. C. 4(2016)7948-7958.

DOI: 10.1039/c6tc02371a

Google Scholar

[10] D. Kwon, S. J. Lee and J. Myoung, High-performance flexible ZnO nanorod UV photodetectors with a network-structured Cu nanowire electrode, Nanoscale, 8(2016) 16677–16683.

DOI: 10.1039/c6nr05256h

Google Scholar

[11] J. Wang, X. Li, C. Teng, Y. Xia, J. Xu, D. Xie, L. Xiang and S. Komarneni, Ligand-directed rapid formation of ultralong ZnOnanowires by oriented attachment for UV photodetectors, J. Mater. Chem. C. 4(2016)5755—5765.

DOI: 10.1039/c6tc01054g

Google Scholar

[12] M. Lua, H. Chen, C. Tsai, Y. Tseng, Y. Kuo, H. Wang, and M. Lu, Low-Temperature-Grown p–n ZnO Nanojunction Arrays as Rapid and Self-Driven UV Photodetectors, Chem. Commun., 2016, in press.

DOI: 10.1039/c6cc06347k

Google Scholar

[13] C. Lan, C. Li, S. Wang, Y. Yin, H. Guo, N. Liu and Y. Liu, ZnO–WS2 heterostructures for enhanced ultraviolet photodetectors, RSC Adv. 6(2016)67520–67524.

DOI: 10.1039/c6ra12643j

Google Scholar

[14] H. Li, S. Jiao, H. Li, S. Gao, J. Wang, D. Wang, Q. Yu, Y. Zhang, L. Li and H. Zhou, An interfacial defect-controlled ZnO/PbS QDs/ZnS heterostructure based broadband photodetector, RSC Adv. 6(2016)74575–74581.

DOI: 10.1039/c6ra14574d

Google Scholar

[15] A. Upneja, G. Dou, C. Gopu, C. A. Johnson, A. Newman, A. Suleimenovd and J. L. Goldfarb, Sustainable waste mitigation: biotemplated nanostructured ZnO for photocatalytic water treatment via extraction of biofuels from hydrothermal carbonization of banana stalk, RSC Adv. 6(2016).

DOI: 10.1039/c6ra21663c

Google Scholar

[16] Q. Li, P. Wang, S. Liu, Y. Fei and Y. Deng, Catalytic degradation of polyurea: synthesis of N-substituted carbamates with CuO–ZnO as the catalyst, Green Chem. In press.

DOI: 10.1039/c6gc01884j

Google Scholar

[17] Y. Zhu, X. Bu, D. Wang, P. Wang, A. Chen, Q. Li, J. Yang and X. Wang, Graphene nanodots decorated ultrathin P doped ZnO nanosheets as highly efficient photocatalysts, RSC Adv. 6(2016)78846–78851.

DOI: 10.1039/c6ra11446f

Google Scholar

[18] J. Li, H. Liu, Y. Ji, Y. Zhang, G. Wang, Y. Zhu, Z. Zhong, X. Hu and F. Su, Honeycomb-like CuO/ZnO hybrid nanocatalysts prepared from solid waste generated in the organosilane industry, RSC Adv. 6(2016)59737–59748.

DOI: 10.1039/c6ra11132g

Google Scholar

[19] M. M. Hossain, H. Shima, S. Son and J. R. Hahn, In situ fabrication of a thermally stable and highly porous conductive solar light-driven ZnO–CNT fiber photocatalyst, RSC Adv. 6(2016)71450–71460.

DOI: 10.1039/c6ra08190h

Google Scholar

[20] J. Yang, J. Wang, X. Li, D. Wang and H. Song, Synthesis of urchin-like Fe3O4@SiO2@ZnO/CdS core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light, Catal. Sci. Technol. 6(2016)4525–4534.

DOI: 10.1039/c5cy02090e

Google Scholar

[21] J. Xu, Y. Cui, Y. Han, M. Hao, X. Zhang, ZnO-graphene composites with high photocatalytic activities under visible light, RSC Adv., 2016, In press.

DOI: 10.1039/c6ra19622e

Google Scholar

[22] S. l P. Lonkar, V. Pillai, A. Abdala and V. Mittal, In situ formed graphene/ZnO nanostructured composites for low temperature hydrogen sulfide removal from natural gas, RSC Adv. 6(2016)81142–81150.

DOI: 10.1039/c6ra08763a

Google Scholar

[23] D. Li, Y. Zhang, D. Liu, S. Yao, F. Liu, B. Wang, P. Sun, Y. Gao, X. Chuai and G. Lu, Hierarchical core/shell ZnO/NiO Nano heterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance, Cryst. Eng. Comm, in press.

DOI: 10.1039/c6ce01621a

Google Scholar

[24] P. Camarda, F. Messina, L. Vaccaro, S. Agnello, G. Buscarino, R. Schneider, R. Popescu, D. Gerthsen, R. Lorenzi, F. M. Gelardi and M. Cannas, Luminescence mechanisms of defective ZnO nanoparticles, Phys. Chem. Chem. Phys. 18(2016) 16237-16244.

DOI: 10.1039/c6cp01513a

Google Scholar

[25] Y. Zhang, H. Lu, T. Wang, Q. Ren, H. Chen, H. Zhang, X. Ji, W. Liu, S. Ding and D. Zhang, Photoluminescence enhancement of ZnO nanowire arrays by atomic layer deposition of ZrO2 layers and thermal annealing, Phys. Chem. Chem. Phys. 18(2016).

DOI: 10.1039/c6cp01900e

Google Scholar

[26] K. Suzuki, M. Takahashi, L. Malfattiac and P. Innocenzi, Carbon dots in ZnO macroporous films with controlled photoluminescence through defects engineering, RSC Adv. 6(2016)55393–55400.

DOI: 10.1039/c6ra09479a

Google Scholar

[27] W. Chen, C. Su, H. Hsieh, M. Chang and M. Ho, Dilute manganese-doped ZnO nanowires for high photoelectrical performance, RSC Adv. 6(2016)91216–91224.

DOI: 10.1039/c6ra14208g

Google Scholar

[28] H. Lahmar, A. Azizi, G. Schmerber and A. Dinia, Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/n-AZO heterojunctions, RSC Adv. 6(2016)68663–68674.

DOI: 10.1039/c6ra04834j

Google Scholar

[29] R. Paul, R. N. Gayen, S. Biswas, S. Venkataprasad Bhat and R. Bhunia, Enhanced UV detection by transparent grapheme oxide/ZnO composite thin films, RSC Adv. 6(2016)61661–61672.

DOI: 10.1039/c6ra05039e

Google Scholar

[30] S. Y. Sawant and M. H. Cho, Facile and single-step route towards ZnO@C core–shell nanoparticles as an oxygen vacancy induced visible light active photocatalyst using the thermal decomposition of Zn(an)2(NO3)2, RSC Adv. 6(2016)70644–70652.

DOI: 10.1039/c6ra14108k

Google Scholar

[31] W. Raza, S. M. Faisal, M. Owais, D. Bahnemannc and M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity, RSC Adv. 6(2016)78335–78350.

DOI: 10.1039/c6ra06774c

Google Scholar

[32] L. Cheng, Q. Chang, Y. Chang, N. Zhang, C. Tao, Z. Wang and X. Fan, Hierarchical forest-like photoelectrodes with ZnO nanoleaves on a metal dendrite array, J. Mater. Chem. A. 4(2016)9816–9821.

DOI: 10.1039/c6ta02764d

Google Scholar

[33] A. Naskar, S. Bera, R. Bhattacharya, P. Saha, S. S. Roy, T. Sen and S. Jana, Synthesis, characterization and antibacterial activity of Ag incorporated ZnO–grapheme nanocomposites, RSC Adv. 6(2016)88751–88761.

DOI: 10.1039/c6ra14808e

Google Scholar

[34] N. Babayevska, B. Pepli´nska, M. Jarek, L. Yate, K. Tadyszak, J. Gapi´nski, I. Iatsunskyi and S. Jurg, Synthesis, structure, EPR studies and upconversion luminescence of ZnO: Er3+–Yb3+@Gd2O3 nanostructures, RSC Adv. 6(2016)89305–89312.

DOI: 10.1039/c6ra18393j

Google Scholar

[35] J. Cui, J. Jiang, L. Shi, F. Zhao, D. Wang, Y. Lin and T. Xie, The role of Ni doping on photoelectric gas-sensing properties of ZnO nanofibers to HCHO at room temperature, RSC Adv. 6(2016)78257–78263.

DOI: 10.1039/c6ra11887a

Google Scholar

[36] T. J. Park, R. C. Pawar, S. Kang and C. S. Lee, Ultra-thin coating of g-C3N4 on an aligned ZnO nanorod film for rapid charge separation and improved photo degradation performance, RSC Adv. 6(2016)89944–89952.

DOI: 10.1039/c6ra16300a

Google Scholar

[37] A. Banik, M. S. Ansari, T. K. Sahu and M. Qureshi, Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells, Phys. Chem. Chem. Phys. in press.

DOI: 10.1039/c6cp05544c

Google Scholar

[38] R. Gupta, N. K. Eswar, J. M. Modaka and G. Madras, Visible light driven efficient N and Cu co-doped ZnO for photo inactivation of Escherichia coli, RSC Adv. 6(2016)85675–85687.

DOI: 10.1039/c6ra16739j

Google Scholar

[39] H. Sagir, Rahila, P. Rai, P. K. Singhb and I. R. Siddiqui, ZnO nanoparticle–b-cyclodextrin: a recyclable heterogeneous catalyst for the synthesis of 3-aryl-4H-benzo[1, 4]thiazin-2-amine in water, New J. Chem. 40(2016)6819—6824.

DOI: 10.1039/c5nj03273c

Google Scholar

[40] C. P. Tsangarides, H. Ma and A. Nathan, ZnO nanowire array growth on precisely controlled patterns of inkjet-printed zinc acetate at low-temperatures, Nanoscale. 8(2016)11760–11765.

DOI: 10.1039/c6nr02962k

Google Scholar

[41] X. Ma, B. Zhang, Q. Cong, X. He, M. Gao, G. Li; Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties, Materials Chemistry and Physics. 178(2016)88-97.

DOI: 10.1016/j.matchemphys.2016.04.074

Google Scholar

[42] Q. Cong, X. He, M. Gao, X. Ma, G. Li, ZnO/CuS heterostructured nanocomposite and its organic functionalization, Materials Research Innovations. 18(2014)740-746.

DOI: 10.1179/1432891714z.000000000775

Google Scholar

[43] Q. Cong, H. Geng, X. He, M. Gao, X. Ma, G. Li, Surface modification of ZnO nanosheets with Au/polyaniline and their properties, Materials Research Innovations. 18(2014)30-36.

Google Scholar

[44] X. Ma, M. Wang, G. Li, H. Chen, and R. Bai, Preparation of Polyaniline-TiO2 Composite Film with in-situ Polymerization Approach and Its Gas-sensitivity at Room Temperature, Materials Chemistry and Physics. 98(2006)241-247.

DOI: 10.1016/j.matchemphys.2005.09.027

Google Scholar

[45] F. Wang,J. Yang,S. Nie,W. Suand G. Pan, All solution-processed large-area patterned flexible photodetectors based on ZnO/EP/PVK hybrid film, J. Mater. Chem. C. 4(2016)7841-7845.

DOI: 10.1039/c6tc01460g

Google Scholar

[46] L. Wang, T. Chen, Q. Lin, H. Shen, A. Wang, H. Wang, C. Li, L. Li, High-performance azure blue quantum dot light-emitting diodes via doping PVK in emitting layer, Organic Electronics. 37(2016)280-286.

DOI: 10.1016/j.orgel.2016.06.032

Google Scholar

[47] G.L. Jimenez, J.U. Balderas, C. Falcony, R. Caro, B.B. Salmeron-Quiroz, M. Mondragon, Morphology and photoluminescence properties of electrospun microfibers of poly(9-vinylcarbazole)/tris-(8-hydroxyquinoline) aluminum and poly(9-vinylcarbazole)/4, 7-diphenyl-1, 10-phenanthroline blends, Optical Materials. 42(2015).

DOI: 10.1016/j.optmat.2015.01.042

Google Scholar

[48] J. Zhang, Y. Luo, F. Xu, Y. Chen, Novel poly(N-vinylcarbazole) grafted multi-walled carbon nanotube nanocomposites based on a nucleophilic reaction: Synthesis, fabrication of thin films, and sensing properties, Chemical Engineering Journal. 298 (2016).

DOI: 10.1016/j.cej.2016.04.026

Google Scholar

[49] Y. Xiang, L. Li, S. Zheng, Photophysical and dielectric properties of nanostructured epoxy thermosets containing poly(N-vinylcarbazole) nanophases, Polymer. 98 (2016) 344-352.

DOI: 10.1016/j.polymer.2016.06.037

Google Scholar

[50] A. N. Aleshin, I. r P. Shcherbakov, A. S. Komolov, V. N. Petrov, I. N. Trapeznikova, Poly(9-vinylcarbazole)–graphene oxide composite field-effect transistors with enhanced mobility, Organic Electronics. 16 (2015) 186–194.

DOI: 10.1016/j.orgel.2014.11.006

Google Scholar

[51] A. Aashish, R. Ramakrishnan, J.D. Sudha, M. Sankaran, G. Krishnapriya, Self-assembled hybrid polyvinylcarbazole–titania nanotubes as an efficient photoanode for solar energy harvesting, SolarEnergyMaterials&SolarCells. 151(2016)169–178.

DOI: 10.1016/j.solmat.2016.03.007

Google Scholar