Dielectric Behavior of Barium Titanate/Carbon Fibers Composites

Article Preview

Abstract:

Conductor–insulator composites have been extensive researched for high dielectric constant. Most of them concentrated on metal polymers or metal ceramics. Barium titanate–carbon fibers composites were prepared by using a solid state reaction process with carbon fibers contents ranging from7 vol% to 23 vol%. Due to the high-aspect-ratio of carbon fiber, it was easy to produce a conducting network at much lower volume fraction. FESEM images illustrated that the carbon fibers influenced the densification and microstructure of the ceramics. Besides, addition of carbon fibers led to increase in dielectric permittivity, also had effects on the dielectric loss and ac conductivity. The dielectric and conductivity properties as a function of carbon fibers volume fraction were explained by the percolation theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2101-2106

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 10 (2001) 5243-5275.

DOI: 10.1063/1.1361065

Google Scholar

[2] Y. Wang, X. Zhou, Q. Chen, B.J. Chu, Q.M. Zhang, Recent development of high energy density polymers for dielectric capacitors, IEEE Trans. Dielectr. Electr. Insul. 4 (2010) 1036-1042.

DOI: 10.1109/tdei.2010.5539672

Google Scholar

[3] P. Saini, M. Arora, New Polymers for Special Applications by Gomes AD (ed) Intech, Croatia. 105772 (2012) 48779.

Google Scholar

[4] S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee and T.C. Goel, Complex permittivity and microwave absorption properties of a composite dielectric absorber, Compos. Part A-Appl. S. 11 (2006) 2148-2154.

DOI: 10.1016/j.compositesa.2005.11.006

Google Scholar

[5] D.H. Kuo, C.C. Chang, T.Y. Su, W.K. Wang, B.Y. Lin, Dielectric behaviours of multi-doped BaTiO3/epoxy composites, J. Eur. Ceram. Soc. 9 (2001) 1171-1177.

DOI: 10.1016/s0955-2219(00)00327-7

Google Scholar

[6] X. Zhang, Y. Ma, C. Zhao, W. Yang, High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane, Appl. Sur. Sci. 305 (2014) 531-538.

DOI: 10.1016/j.apsusc.2014.03.131

Google Scholar

[7] Y. Li, X.Y. Huang, Z.W. Hu, P.K. Jiang, S.T. Li, T. Tanaka, Large dielectric constant and high thermal conductivity in poly (vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites, ACS Appl. Mater. Inter. 11 (2011).

DOI: 10.1021/am2010459

Google Scholar

[8] J. Xu, C.P. Wong, Low-loss percolative dielectric composite, Appl. Phys. Lett. (8) 2005 082907.

Google Scholar

[9] B. Chen, K. Wu, W. Yao, Conductivity of carbon fiber reinforced cement-based composites, Cement. Concrete. Comp. 4 (2004) 291-297.

DOI: 10.1016/s0958-9465(02)00138-5

Google Scholar

[10] M.H. Choi, B.H. Jeon, I.J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polymer. 9 (2000) 3243-3252.

DOI: 10.1016/s0032-3861(99)00532-7

Google Scholar

[11] Y.K. Choi, K. Sugimoto, S.M. Song, Y. Gotohb, Y. Ohkoshib, M. Endoa, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers, Carbon. 10 (2005) 2199-2208.

DOI: 10.1016/j.carbon.2005.03.036

Google Scholar

[12] W. Qin, F. Vautard, L.T. Drzal, J. Yua, Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase, Compos. Part. B-Eng. 69 (2015) 335-341.

DOI: 10.1016/j.compositesb.2014.10.014

Google Scholar

[13] S. Zhou, Q. Zhang, C. Wu, J. Huang, Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites, Mater. Design. 44 (2013) 493-499.

DOI: 10.1016/j.matdes.2012.08.029

Google Scholar

[14] E. Moaseri, M. Maghrebi, M. Baniadam, Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: a microwave-assisted approach in functionalization of carbon fiber via diamines, Mater. Design. 55 (2014) 644-652.

DOI: 10.1016/j.matdes.2013.10.040

Google Scholar

[15] F. Li, Y. Liu, C.B. Qu, H.M. Xiao, Y. Hua, G.X. Sui, S.Y. Fu, Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating, Polymer. 59 (2015) 155-165.

DOI: 10.1016/j.polymer.2014.12.067

Google Scholar

[16] M. Kotaki, K. Wang, M.L. Toh, L. Chen, S.Y. Wong, C. He, Electrically conductive epoxy/clay/vapor grown carbon fiber hybrids, Macromolecules. 3 (2006) 908-911.

DOI: 10.1021/ma0522561

Google Scholar

[17] C. Huang, Q.M. Zhang, G. deBotton, K. Bhattacharya, All-organic dielectric-percolative three-component composite materials with high electromechanical response, Appl. Phys. Lett. 22 (2004) 4391-4393.

DOI: 10.1063/1.1757632

Google Scholar

[18] P. Tsotra, K. Friedrich, Electrical and dielectric properties of epoxy resin/polyaniline-DBSA blends, J. Mater. Sci. (16) 2005 4415-4417.

DOI: 10.1007/s10853-005-3830-6

Google Scholar

[19] Z.M. Dang, L. Wang, Y. Yin, Y. Zhang, Q.Q. Lei, Giant dielectric permittivity in functionalized carbon-nanotube/electroactive-polymer nanocomposites, Adv. Mater. (6) 2007 852-857.

DOI: 10.1002/adma.200600703

Google Scholar

[20] W.D. Heiss, D.S. McLachlan, C. Chiteme, Higher-order effects in the dielectric constant of percolative metal-insulator systems above the critical point, Phys. Rev. B. (7) 2000 4196-4199.

DOI: 10.1103/physrevb.62.4196

Google Scholar

[21] C. Pecharromán, J.S. Moya, Experimental evidence of a giant capacitance in insulator–conductor composites at the percolation threshold, Adv. Mater. 4 (2000) 294-297.

DOI: 10.1002/(sici)1521-4095(200002)12:4<294::aid-adma294>3.0.co;2-d

Google Scholar

[22] A.K. Jonscher. The universal dielectric, response, nature. 267 (1977) 673-679.

Google Scholar