[1]
Orndoff E. Development and evaluation of polybenzoxazole fibrous structures[M]. National Aeronautics and Space Administration, (1995).
Google Scholar
[2]
Koshiyo Horikawa, Yukihiro Nomura, Yutaka Kitagawa, etc. Influence of strain rate on tensile strength of high modulus type PBO fiber [J]. Japan Society of Mechanical Engineers paper A, 2012, 78 (788): 421-431.
DOI: 10.1299/kikaia.78.421
Google Scholar
[3]
Yabuki Kazuyuki, Kato Katsuhiko Polyparaphenylene Bezobisoxazole (PBO) fiber Ultra High Performance Fiber [J]. Journal of the Society of Fiber Science and Technology, 1996, 52 (3): 143-147.
Google Scholar
[4]
Liu D, Chen M, et al. Surface modification of high performance PBO fibers using radio frequency argon plasma[J]. Surface and Coatings Technology, 2012, 206(16): 3534-3541.
DOI: 10.1016/j.surfcoat.2012.02.033
Google Scholar
[5]
Kitagawa T, Yabuki K, Wright A C, et al. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres: part 3: analysis of fibre microstructure using transmission electron microscopy[J]. Journal of Materials Science, 2014, 49(18): 6467-6474.
DOI: 10.1007/s10853-014-8377-y
Google Scholar
[6]
Vázquez-Santos M B, Martínez-Alonso A, Tascón J M D, et al. Nanostructure evolution in heat-treated porous carbons derived from PBO polymer[J]. Journal of Alloys and Compounds, 2012, 536: 464-468.
DOI: 10.1016/j.jallcom.2011.10.072
Google Scholar
[7]
Handbook of technical textiles[M]. Elsevier, (2000).
Google Scholar
[8]
Mills M E, Teramoto Y, Faley T L, et al. Method for stable rapid spinning of a polybenzoxazole or polybenzothiazole fiber: U.S. Patent 5, 385, 702[P]. 1995-1-31.
Google Scholar
[9]
Aleksadr W E, Chao C C, Ferraz T L. Improved method after textile finishing for PBO fiber: CN, CN1087138A[P]. (1999).
Google Scholar
[10]
Japan TOYOBO Company PBO FIBER ZYLON Products [EB/OL]. http: /www. toyobo. co. jp/e/seihin/kc/pbo/technical. pdf.
Google Scholar
[11]
Kitagawa T, Kiriyama K, Shimizu Y. A Novel Random Preferential Orientation of the Crystal A-axis Along the Radial Direction Confirmed on the Poly-p-phenylenebenzobisoxazole (PBO) Fiber Made with a Water[J]. Journal of the Society of Fiber Science and Technology, 2015, 71(7): 224-231.
DOI: 10.2115/fiber.71.224
Google Scholar
[12]
K. Tamargo-Martı́nez, S. Villar-Rodil, J.I. Paredes, et al. Thermal decomposition of poly(p-phenylene benzobisoxazole) fibres: monitoring the chemical and nanostructural changes by Raman spectroscopy and scanning probe microscopy[J]. Polymer Degradation & stability, 2004, 86(2): 263–268.
DOI: 10.1016/j.polymdegradstab.2004.05.004
Google Scholar
[13]
Cohen Y, Gartstein E, Arndt K F, et al. The effect of heat treatment on the microfibrillar network of poly(p-phenylene benzobisthiazole)[J]. Societyofplasticsengineers Inc, 1996, 36(10): 1355–1359.
DOI: 10.1002/pen.10530
Google Scholar
[14]
Kitagawa T, Sugihara H, Tsutsumi M. The Effect of Non-Aqueous Coagulation in the Structure of Poly- p -phenylenebenzobisoxazole (PBO) Fibers[J]. Fiber, 2015, 71(2): 105-111.
DOI: 10.2115/fiber.71.105
Google Scholar
[15]
Liu Xiaoyun, et al. PBO fiber microstructure development and mechanical properties of structural changes in the heat treatment process[C]/ 2007 National Polymer academic report abstracts (Volume One). (2007).
Google Scholar