[1]
Rui Xu, Gaoxing Luo, Hesheng Xia, Weifeng He, Jian Zhao, Bo Liu, Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction, Biomaterials. 40 (2015) 1-11.
DOI: 10.1016/j.biomaterials.2014.10.077
Google Scholar
[2]
R. Andrew Glennie, Nicolas Dea, John T. Street, Dressings and drains in posterior spine surgery and their effect on wound complications, J. Clin. Neurosci. 22 (2015) 1081-1087.
DOI: 10.1016/j.jocn.2015.01.009
Google Scholar
[3]
George Dan Mogosanu, Alexandru Mihai Grumezescu, Natural and synthetic polymers for wounds and burns dressing, Int. J. Pharmaceut. 463 (2014) 127-136.
DOI: 10.1016/j.ijpharm.2013.12.015
Google Scholar
[4]
Liane I.F. Moura, Ana M.A. Dias, Eugénia Carvalho, Hermínio C. de Sousa, Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review, Acta Biomater. 9 ( 2013) 7093-7114.
DOI: 10.1016/j.actbio.2013.03.033
Google Scholar
[5]
Uyanga Dashdorj, Mark Kenneth Reyes, Afeesh Rajan Unnithan, Arjun Prasad Tiwari, Batgerel Tumurbaatar, Chan Hee Park, Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications, Int. J. Biol. Macromol. 80 (2015).
DOI: 10.1016/j.ijbiomac.2015.06.026
Google Scholar
[6]
Sorada Kanokpanont, Siriporn Damrongsakkul, Juthamas Ratanavaraporn, Pornanong Aramwit, An innovative bi-layered wound dressing made of silk and gelatin for accelerated, Int. J. Pharmaceut. 436 (2012) 141-153.
DOI: 10.1016/j.ijpharm.2012.06.046
Google Scholar
[7]
Xu Tian, Li-Juan Yi, Li Ma, Lei Zhang, Guo-Min Song, Yan Wang, Effects of honey dressing for the treatment of DFUs: A systematic review, Int. J. Nurs. Sci. 1 (2014) 224-231.
DOI: 10.1016/j.ijnss.2014.05.013
Google Scholar
[8]
Pascal Morissette Martin, Amandine Maux, Véronique Laterreur, Dominique Mayrand, Valérie L. Gagné, Véronique J. Moulin, Enhancing repaire of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes, Acta Biomater. 22 (2015).
DOI: 10.1016/j.actbio.2015.04.036
Google Scholar
[9]
Haifeng Liu, Xiaoming Li, Gang Zhou, Hongbin Fan, Yubo Fan, Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering, Biomaterials. 32 (2011) 3784-3793.
DOI: 10.1016/j.biomaterials.2011.02.002
Google Scholar
[10]
Sorada Kanokpanont, Siriporn Damrongsakkul, Juthamas Ratanavaraporn, Pornanong Aramwit, Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing, Int. J. Biol. Macromol. 55 (2013) 88-97.
DOI: 10.1016/j.ijbiomac.2013.01.003
Google Scholar
[11]
Laura J. Bray, Karina A. George, Dietmar W. Hutmacher, Traian V. Chirila, Damien G. Harkin, A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus, Biomaterials. 33 (2012) 3529-3538.
DOI: 10.1016/j.biomaterials.2012.01.045
Google Scholar
[12]
Lina W. Dunne, Tejaswi Iyyanki, Justin Hubenak, Anshu B. Mathur, Characterization of dielectrophoresis-aligned nanofibrous silk fibroin–chitosan scaffold and its interactions with endothelial cells for tissue engineering applications, Acta Biomater. 10 (2014).
DOI: 10.1016/j.actbio.2014.05.005
Google Scholar
[13]
R. Jayakumar, M. Prabaharan, P.T. Sudheesh Kumar, S.V. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv. 29 (2011) 322-337.
DOI: 10.1016/j.biotechadv.2011.01.005
Google Scholar
[14]
Jianglin Wang, Wei Hu, Qun Liu, Shengmin Zhang, Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan, Colloids Surf. B: Biointer. 85 (2011) 241-247.
DOI: 10.1016/j.colsurfb.2011.02.035
Google Scholar
[15]
Nandana Bhardwaj, Subhas C. Kundu, Chondrogenic differentiation of rat MSCs on porous scaffolds of silkfibroin/chitosan blends, Biomaterials. 33 (2012) 2848-2857.
DOI: 10.1016/j.biomaterials.2011.12.028
Google Scholar
[16]
Alina Sionkowska, Anna Płanecka, Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering wound healing, J. Mol. Liq. 178 (2013) 5-14.
DOI: 10.1016/j.molliq.2012.10.042
Google Scholar
[17]
Guo-Jyun Lai, K.T. Shalumon, Shih-Hsien Chen, Jyh-Ping Chen, Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells, Carbohydr. Polym. 111 (2014) 288-297.
DOI: 10.1016/j.carbpol.2014.04.094
Google Scholar
[18]
Yingshan Zhou, Hongjun Yang, Xin Liu, Jun Mao, Shaojin Gu, Weilin Xu, Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings, Int. J. Biol. Macromol. 53 (2013) 88-92.
DOI: 10.1016/j.ijbiomac.2012.11.013
Google Scholar
[19]
Chirila TV, Barnard Z, Zainuddin Harkin DG, Schwab IR, Hirst LW, Bombyx mori silkfibroin membranes as potential substrata for epithelial constructs used in the management of ocular surface disorders, Tissue Eng. Part A. 14 (2008) 1203-1211.
DOI: 10.1089/ten.tea.2007.0224
Google Scholar
[20]
Margarida M. Fernandes, Antonio Francesko, Juan Torrent-Burgués, Tzanko Tzanov, Effect of thiol-functionalisation on chitosan antibacterial activity: Interaction with a bacterial membrane model, React. Funct. Polym. 73 (2013) 1384-1390.
DOI: 10.1016/j.reactfunctpolym.2013.01.004
Google Scholar
[21]
M.S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M.F.A. Goosen, N. Mameri, Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste, Food Hydrocolloid. 29 (2012) 48-56.
DOI: 10.1016/j.foodhyd.2012.02.013
Google Scholar