Impregnation Behavior of Polyamide 6 in Carbon Fibers and the Properties of their Composites

Article Preview

Abstract:

Unidirectional carbon fiber (CF) / Polyamide 6 (PA6) composites were prepared by stacking fabrics method. Due to the effect of the textile structure and rough surface of PA6 fabrics, slipping of carbon fibers (CFs) during the stacking process was prevented and uniformity of impregnation was improved. Meanwhile, the usage of PA6 fabrics resulted in the minimum level of void content of composites, which improved the mechanical properties of composites. Additionally, the void content of materials was associated with the mechanical properties of composites. The flexural strength of composite reached 819.58 MPa when its void content was 3.49%. Moreover, a model based on Darcy’s law was developed to simulate the impregnation behavior of PA6 in CFs which was made by stacking fabrics method. The resin flow was observed by using optical microscopy. The evolution of void content in composites was related to the processing parameters (holding time, processing temperature and processing pressure).The comparison between the experimental and simulated data showed that the model was reliable to describe the impregnation process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2134-2142

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Gabrion, V. Placet, F. Trivaudey, L. Boubakar, About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite, Compos. Part B-Eng. 95 (2016) 386-394.

DOI: 10.1016/j.compositesb.2016.03.068

Google Scholar

[2] J.W. Yi, W. Lee, D.G. Seong, H.J. Won, S.W. Kim, M.K. Um, J.H. Byun, Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites, Compos. Part A-Appl. S. 87 (2016) 212-219.

DOI: 10.1016/j.compositesa.2016.04.028

Google Scholar

[3] H. Diao, P. Robinson, M.R. Wisnom, A. Bismarck, Unidirectional carbon fibre reinforced polyamide-12 composites with enhanced strain to tensile failure by introducing fibre waviness, Compos. Part A-Appl. S. 87 (2016) 186-193.

DOI: 10.1016/j.compositesa.2016.04.025

Google Scholar

[4] B.S. Yoon, S.H. Lee, M.H. Suh, Continuous glass-fiber reinforced nylon 6 by using a new impregnation die, Polym. Composite. 18 (1997) 656-662.

DOI: 10.1002/pc.10317

Google Scholar

[5] J.W. Seo, W.I. Lee, A model of the resin impregnation in thermoplastic composites, J. Compos. Mater. 25 (1991) 1127-1142.

Google Scholar

[6] S. Padaki, L.T. Drzal, A simulation study on the effects of particle size on the consolidation of polymer powder impregnated tapes, Compos. Part A-Appl. S. 30 (1999) 325-337.

DOI: 10.1016/s1359-835x(98)00115-8

Google Scholar

[7] A.H. Miller, N. Dodds, J.M. Hale, A.G. Gibson, High speed pultrusion of thermoplastic matrix composites, Compos. Part A-Appl. S. 29 (1998) 773-782.

DOI: 10.1016/s1359-835x(98)00006-2

Google Scholar

[8] N. Svensson, R. Shishoo, M. Gilchrist, Manufacturing of thermoplastic composites from commingled yarns - A review, J. Thermoplast. Compos. 11 (1998) 22-56.

DOI: 10.1177/089270579801100102

Google Scholar

[9] D.H. Kim, W.I. Lee, K. Friedrich, A model for a thermoplastic pultrusion process using commingled yarns, Compos. Sci. Technol. 61 (2001) 1065-1077.

DOI: 10.1016/s0266-3538(00)00234-7

Google Scholar

[10] M. Golzar, H. Brunig, E. Mader, Commingled hybrid yarn diameter ratio in continuous fiber-reinforced thermoplastic composites, J. Thermoplast. Compos. 20 (2007) 17-26.

DOI: 10.1177/0892705707068069

Google Scholar

[11] R. Alagirusamy, V. Ogale, Development and characterization of GF/PET, GF/Nylon, and GF/PP commingled yarns for thermoplastic composites, J. Thermoplast. Compos. 18 (2005) 269-285.

DOI: 10.1177/0892705705049557

Google Scholar

[12] L. Zhang, M. Miao, Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites, Compos. Sci. Technol. 70 (2010) 130-135.

DOI: 10.1016/j.compscitech.2009.09.016

Google Scholar

[13] P. Kravaev, O. Stolyarov, G. Seide, T. Gries, Influence of process parameters on filament distribution and blending quality in commingled yarns used for thermoplastic composites, J. Thermoplast. Compos. 27 (2014) 350-363.

DOI: 10.1177/0892705712446167

Google Scholar

[14] R. Gennaro, A. Greco, A. Maffezzoli, Numerical simulation of the microscale impregnation in commingled thermoplastic composite yarns, Adv. Polym. Tech. 29 (2010) 122-130.

DOI: 10.1002/adv.20179

Google Scholar

[15] A.M. Vodermayer, J.C. Kaerger, G. Hinrichsen, Manufacture of high performance fibre-reinforced thermoplastics by aqueous powder impregnation, Compos. Manuf. 4 (1993) 123-132.

DOI: 10.1016/0956-7143(93)90096-q

Google Scholar

[16] C. Steggall-Murphy, P. Simacek, S.G. Advani, S. Yarlagadda, S. Walsh, A model for thermoplastic melt impregnation of fiber bundles during consolidation of powder-impregnated continuous fiber composites, Compos. Part A-Appl. S. 41 (2010) 93-100.

DOI: 10.1016/j.compositesa.2009.09.026

Google Scholar

[17] F. Lacroix, H.Q. Lu, K. Schulte, Wet powder impregnation for polyethylene composites: preparation and mechanical properties, Compos. Part A-Appl. S. 30 (1999) 369-373.

DOI: 10.1016/s1359-835x(98)00085-2

Google Scholar

[18] M. Rath, S. Kreuzberger, G. Hinrichsen, Manufacture of aramid fibre reinforced nylon-12 by dry powder impregnation process, Compos. Part A-Appl. S. 29 (1998) 933-938.

DOI: 10.1016/s1359-835x(98)00021-9

Google Scholar

[19] A.K. Mohanty, L.T. Drzal, M. Misra, Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing, J. Adhes. Sci. Technol. 16 (2002) 999-1015.

DOI: 10.1163/156856102760146129

Google Scholar

[20] R. Ali, S. Iannace, L. Nicolais, Effects of processing conditions on the impregnation of glass fibre mat in extrusion/calendering and film stacking operations, Compos. Sci. Technol. 63 (2003) 2217-2222.

DOI: 10.1016/s0266-3538(03)00175-1

Google Scholar

[21] S.T. Jespersen, M.D. Wakeman, V. Michaud, D. Cramer, J.A.E. Manson, Film stacking impregnation model for a novel net shape thermoplastic composite preforming process, Compos. Sci. Technol. 68 (2008) 1822-1830.

DOI: 10.1016/j.compscitech.2008.01.019

Google Scholar

[22] F.C. Smith, L.D. Moloney, F.L. Matthews, J. Hodges, Fabrication of woven carbon fibre/polycarbonate repair patches, Compos. Part A-Appl. S. 27 (1996) 1089-1095.

DOI: 10.1016/1359-835x(96)00070-x

Google Scholar

[23] A.E. Ross, Tailored carbon fiber blanks set to move into steel stamping arena, High-Perform. Compos. 14 (2006) 24-28.

Google Scholar

[24] V. Michaud, A. Mortensen, Infiltration processing of fibre reinforced composites: governing phenomena, Compos. Part A-Appl. S. 32 (2001) 981-996.

DOI: 10.1016/s1359-835x(01)00015-x

Google Scholar

[25] T.G. Gutowski, Z. Cai, S. Bauer, D. Boucher, J. Kingery, S. Wineman, Consolidation Experiments for Laminate Composites, J. Compos. Mater. 21 (1987) 650-669.

DOI: 10.1177/002199838702100705

Google Scholar

[26] T.G. Gutowski, T. Morigaki, Z. Cai, The consolidation of laminate composites, J. Compos. Mater. 21 (1987) 172-188.

DOI: 10.1177/002199838702100207

Google Scholar

[27] A.C. Loos, G.S. Springer, Curing of epoxy matrix composites, J. Compos. Mater. 17 (1983) 135-169.

Google Scholar

[28] L. Ye, K. Friedrich, J. Kastel, Y.W. Mai, Consolidation of unidirectional CF/PEEKcomposites from Commingled Yarn Prepreg, Compos. Sci. Technol. 54 (1995) 349-358.

DOI: 10.1016/0266-3538(95)00061-5

Google Scholar

[29] L. Ye, K. Friedrich, D. Cutolo, A. Savadori, Manufacture of CF/PEEK composites from powder/sheath fibre preforms, Compos. Manuf. 5 (1994) 41-50.

DOI: 10.1016/0956-7143(94)90018-3

Google Scholar

[30] L. Ye, A. Beehag, K. Friedrich, Mesostructural aspects of interlaminar fracture in thermoplastic composites - is crystallinity a key, Compos. Sci. Technol. 53 (1995) 167-173.

DOI: 10.1016/0266-3538(95)00015-1

Google Scholar

[31] L. Ye, K. Friedrich, Processing of thermoplastic composites from powder sheath-fiber bundles, J. Mater. Process. Tech. 48 (1995) 317-324.

DOI: 10.1016/0924-0136(94)01664-m

Google Scholar

[32] L. Ye, K. Friedrich, J. Kästel, Consolidation of GF/PP commingled yarn composites, Appl. Compos. Mater. 1 (1994) 415-429.

DOI: 10.1007/bf00706502

Google Scholar

[33] L. Ye, V. Klinkmuller, K. Friedrich, Impregnation and consolidation in composites made of GF/PP powder impregnated bundles, J. Thermoplast. Compos. 5 (1992) 32-48.

DOI: 10.1177/089270579200500103

Google Scholar

[34] A. Kamimura, S. Yamamoto, A novel depolymerization of nylons in ionic liquids, Polym. Advan. Technol. 19 (2008) 1391-1395.

DOI: 10.1002/pat.1199

Google Scholar

[35] Y.X. Wu, Molding process and properties of carbon fiber reinforced polyamaid 6 composite, Donghua Universty, (2015).

Google Scholar

[36] L.E. Nielsen, Polymer Rheology, Marcel Dekker, New York, (1977).

Google Scholar

[37] R.N. Bhattacharya, V.K. Gupta, A theoretical explanation of solute dispersion in saturated porous media at the Darcy Scale, Water Resour. Res. 19 (1983) 938-944.

DOI: 10.1029/wr019i004p00938

Google Scholar

[38] M. Itoi, R.B. Pipes, PAN and pitch-based carbon fiber-reinforced polyethernitrile composites, J. Thermoplast. Compos. 3 (1990) 172-189.

DOI: 10.1177/089270579000300301

Google Scholar