[1]
J. W. S. Hearle. High-performance fibres. Woodhead Publishing Ltd, Cambridge, (2001).
Google Scholar
[2]
M. G. Northolt, R. van der Hout. Elastic extension of an oriented crystalline fibre. Polymer. 26(1985)310-316.
DOI: 10.1016/0032-3861(85)90047-3
Google Scholar
[3]
MM. G. Northolt, J. J. M. Baltussen. The tensile and compressive deformation of polymer and carbon fibers. Journal of Applied Polymer Science. 83(2002)508-538.
DOI: 10.1002/app.2256
Google Scholar
[4]
Y. Rao, A. J. Waddon, R. J. Farris. Structure–property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer. 42(2001)5937-5946.
DOI: 10.1016/s0032-3861(00)00905-8
Google Scholar
[5]
A. E. Zavadskii, I.M. Zakharova, Z.N. Zhukova. Features of the fine structure of aramid fibres. Fibre Chem. 30(1998)6-10.
DOI: 10.1007/bf02484386
Google Scholar
[6]
S. J. Deteresa, S. R. Allen, R. J. Farris, et al. Compressive and torsional behaviour of Kevlar 49 fibre. Journal of Materials Science. 19(1984)57-72.
DOI: 10.1007/bf02403111
Google Scholar
[7]
V. V. Kozey, H. Jiang, V. R. Mehta, et al. Compressive behavior of materials: Part II. High performance fibers. Journal of Materials Research. 10(1995)1044-1061.
DOI: 10.1557/jmr.1995.1044
Google Scholar
[8]
S. L. Bazhenov, V. V. Kozey, A. A. Berlin. Compression fracture of organic fibre reinforced plastics. Journal of Materials Science. 24 (1989) 4509-4615.
DOI: 10.1007/bf00544537
Google Scholar
[9]
C. F. Chen, J. Lan, T. Peng, et al. The development of situation, preparation, properties and applications of Russian aramid fibers. Hi-Tech Fiber & Application. 39(2014)26-31.
Google Scholar
[10]
I. A. Abbronin, V. A. Rakitina, V. A. Gribanov, et al. Quantum Chemical Calculation of the Character of Structural Organization and H-Bond Energy in the Benzimidazole Fragment of Fibres of the Armos Type. Fibre Chem. 34(2002)140-145.
DOI: 10.1023/a:1016372929610
Google Scholar
[11]
F. D. Wang, C. F. Chen, T. Peng, et al. Structure and properties of modified aramid fibers by benzoquinolizine heterocycle. Journal of Solid Rocket Technology, 35(2012)536-540.
Google Scholar
[12]
A. A. Levchenko, E. M. Antipov, N. A. Plate, M. Stamm. Comparative analysis of structure and temperature behaviour of two copolyamides - regular Kevlar and statistical ARMOS. Macromolecular Symposia. 146(1999)145-151.
DOI: 10.1002/masy.19991460120
Google Scholar
[13]
A. Abu Obaid, J. M. Deitzel, J. W. Gillespie, et al. The effects of environmental conditioning on tensile properties of high performance aramid fibers at near-ambient temperatures. Journal of Composite Materials. 45(2011)1217-1231.
DOI: 10.1177/0021998310381436
Google Scholar
[14]
M.G. Northolt, J. J. van Aartsen. Chain orientation distribution and elastic properties of poly (p-phenylene terephthalamide), a rigid rod, polymer. Journal of Polymer Science: Polymer Symposia. 58(1977)283-296.
DOI: 10.1002/polc.5070580120
Google Scholar
[15]
M. G. Northolt, P. den Decker, S. J. Picken, et al. The Tensile Strength of Polymer Fibres, in: Polymeric and Inorganic Fibers, Springer, Berlin Heidelberg, 2005, pp.1-108.
DOI: 10.1007/b104207
Google Scholar
[16]
G. Wang, X. Jin, Y. He, et al. Development of digital fiber sound velocimeter for measurement of molecular orientation degree. Modern Instruments & Medical Treatment. 12(2006)52-55.
Google Scholar
[17]
M. Lammers, E. A. Klop, M. G. Northolt, D. J. Sikkema. Mechanical properties and structural transitions in the new rigid-rod polymer fibre PIPD (`M5') during the manufacturing process. Polymer. 39(1998)5999-6005.
DOI: 10.1016/s0032-3861(98)00021-4
Google Scholar
[18]
S. R. Allen. Tensile recoil measurement of compressive strength for polymeric high performance fibres. Journal of Materials Science. 22(1987) 853-859.
DOI: 10.1007/bf01103520
Google Scholar
[19]
E. M. Antipov, J. W. M. Noordermeer. Mesomorphism in polymers and its mechanotropic variety for polyethylene in binary polymer blends based on it. Journal of Engineering Physics and Thermophysics. 78(2005)844-852.
DOI: 10.1007/s10891-006-0002-8
Google Scholar
[20]
T. Peng, R. Q. Cai, F.D. Wang, et al. Evolvement of aggregative structure of aramid fiber III during spinning process. Journal of Solid Rocket Technology. 33 (2013) 209-213.
Google Scholar
[21]
K.E. Perepelkin. Theory of Extremal Mechanical and Thermal Properties of Fibres and Needle Crystals. Comparison With Experimental Data. Fibre Chem. 36(2004)237-248.
DOI: 10.1023/b:fich.0000047364.39366.dd
Google Scholar
[22]
V. R. Mehta, S. Kumar. Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength. Journal of Materials Science. 29(1994)3658-3664.
DOI: 10.1007/bf00357332
Google Scholar