Structure and Compressive Property of Heterocyclic Aramid Fiber

Article Preview

Abstract:

The F-3 fiber is a trade name of a recently developed type of heterocyclic para-aramid fibers in China. To investigate the relationship between structure and compressive properties for F-3 fiber, the structural parameters and compressive strength have been analyzed in detail compared with the Kevlar-49 fiber. The structural parameters were determined by wide-angle X-ray diffraction (WAXD) analysis and sonic velocity method. The results showed that the orientation of chains of F-3 fiber was higher than that of Kevlar-49 fiber. The results of the tensile recoil method showed that F-3 and Kevlar-49 fibers had approximate compressive strength. The analysis of relation between structure and mechanical properties suggested that the combination of orientation parameter and shear modulus between adjacent chains resulted in the approximate compressive strength of F-3 and Kevlar-49 fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2158-2165

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. S. Hearle. High-performance fibres. Woodhead Publishing Ltd, Cambridge, (2001).

Google Scholar

[2] M. G. Northolt, R. van der Hout. Elastic extension of an oriented crystalline fibre. Polymer. 26(1985)310-316.

DOI: 10.1016/0032-3861(85)90047-3

Google Scholar

[3] MM. G. Northolt, J. J. M. Baltussen. The tensile and compressive deformation of polymer and carbon fibers. Journal of Applied Polymer Science. 83(2002)508-538.

DOI: 10.1002/app.2256

Google Scholar

[4] Y. Rao, A. J. Waddon, R. J. Farris. Structure–property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer. 42(2001)5937-5946.

DOI: 10.1016/s0032-3861(00)00905-8

Google Scholar

[5] A. E. Zavadskii, I.M. Zakharova, Z.N. Zhukova. Features of the fine structure of aramid fibres. Fibre Chem. 30(1998)6-10.

DOI: 10.1007/bf02484386

Google Scholar

[6] S. J. Deteresa, S. R. Allen, R. J. Farris, et al. Compressive and torsional behaviour of Kevlar 49 fibre. Journal of Materials Science. 19(1984)57-72.

DOI: 10.1007/bf02403111

Google Scholar

[7] V. V. Kozey, H. Jiang, V. R. Mehta, et al. Compressive behavior of materials: Part II. High performance fibers. Journal of Materials Research. 10(1995)1044-1061.

DOI: 10.1557/jmr.1995.1044

Google Scholar

[8] S. L. Bazhenov, V. V. Kozey, A. A. Berlin. Compression fracture of organic fibre reinforced plastics. Journal of Materials Science. 24 (1989) 4509-4615.

DOI: 10.1007/bf00544537

Google Scholar

[9] C. F. Chen, J. Lan, T. Peng, et al. The development of situation, preparation, properties and applications of Russian aramid fibers. Hi-Tech Fiber & Application. 39(2014)26-31.

Google Scholar

[10] I. A. Abbronin, V. A. Rakitina, V. A. Gribanov, et al. Quantum Chemical Calculation of the Character of Structural Organization and H-Bond Energy in the Benzimidazole Fragment of Fibres of the Armos Type. Fibre Chem. 34(2002)140-145.

DOI: 10.1023/a:1016372929610

Google Scholar

[11] F. D. Wang, C. F. Chen, T. Peng, et al. Structure and properties of modified aramid fibers by benzoquinolizine heterocycle. Journal of Solid Rocket Technology, 35(2012)536-540.

Google Scholar

[12] A. A. Levchenko, E. M. Antipov, N. A. Plate, M. Stamm. Comparative analysis of structure and temperature behaviour of two copolyamides - regular Kevlar and statistical ARMOS. Macromolecular Symposia. 146(1999)145-151.

DOI: 10.1002/masy.19991460120

Google Scholar

[13] A. Abu Obaid, J. M. Deitzel, J. W. Gillespie, et al. The effects of environmental conditioning on tensile properties of high performance aramid fibers at near-ambient temperatures. Journal of Composite Materials. 45(2011)1217-1231.

DOI: 10.1177/0021998310381436

Google Scholar

[14] M.G. Northolt, J. J. van Aartsen. Chain orientation distribution and elastic properties of poly (p-phenylene terephthalamide), a rigid rod, polymer. Journal of Polymer Science: Polymer Symposia. 58(1977)283-296.

DOI: 10.1002/polc.5070580120

Google Scholar

[15] M. G. Northolt, P. den Decker, S. J. Picken, et al. The Tensile Strength of Polymer Fibres, in: Polymeric and Inorganic Fibers, Springer, Berlin Heidelberg, 2005, pp.1-108.

DOI: 10.1007/b104207

Google Scholar

[16] G. Wang, X. Jin, Y. He, et al. Development of digital fiber sound velocimeter for measurement of molecular orientation degree. Modern Instruments & Medical Treatment. 12(2006)52-55.

Google Scholar

[17] M. Lammers, E. A. Klop, M. G. Northolt, D. J. Sikkema. Mechanical properties and structural transitions in the new rigid-rod polymer fibre PIPD (`M5') during the manufacturing process. Polymer. 39(1998)5999-6005.

DOI: 10.1016/s0032-3861(98)00021-4

Google Scholar

[18] S. R. Allen. Tensile recoil measurement of compressive strength for polymeric high performance fibres. Journal of Materials Science. 22(1987) 853-859.

DOI: 10.1007/bf01103520

Google Scholar

[19] E. M. Antipov, J. W. M. Noordermeer. Mesomorphism in polymers and its mechanotropic variety for polyethylene in binary polymer blends based on it. Journal of Engineering Physics and Thermophysics. 78(2005)844-852.

DOI: 10.1007/s10891-006-0002-8

Google Scholar

[20] T. Peng, R. Q. Cai, F.D. Wang, et al. Evolvement of aggregative structure of aramid fiber III during spinning process. Journal of Solid Rocket Technology. 33 (2013) 209-213.

Google Scholar

[21] K.E. Perepelkin. Theory of Extremal Mechanical and Thermal Properties of Fibres and Needle Crystals. Comparison With Experimental Data. Fibre Chem. 36(2004)237-248.

DOI: 10.1023/b:fich.0000047364.39366.dd

Google Scholar

[22] V. R. Mehta, S. Kumar. Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength. Journal of Materials Science. 29(1994)3658-3664.

DOI: 10.1007/bf00357332

Google Scholar