Preparation PET Hybrided Materials by In Situ Polymerization for Delustered Fibers

Article Preview

Abstract:

A series of polyethylene terephthalate (PET) hybrid materials with high-load TiO2 content were prepared via in situ polymerization by dispersing unmodified titanium dioxide (TiO2) in Ethylene Glycol (EG), and the influence of load TiO2 nanofillers on the physical properties of PET masterbatch was investigated. The intrinsic viscosities of the prepared PET hybrid materials were affected by the addition of the nanoparticles and in both cases a slight decrease was observed. In addition, the thermal behavior of these PET hybrid materials and neat PET was investigated using Differential Scanning Calorimetry (DSC). The chemical structures of PET hybrid materials were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). The TiO2 nanoparticles show well dispersibility in PET matrix. The PET hybrid material with 40wt.% TiO2 content was used as master batch to prepare full dull PET fiber with 2.5 wt.% TiO2. The melt flow ability of PET hybrid materials shows good winding and drawing performance, and also the resulted fiber has better mechanical properties than neat PET fiber. It suggests that this PET/TiO2 masterbatch by in situ polymerization may find good application for delustered fiber preparation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2166-2173

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.H.C. Camargo, K.G. Satyanarayana, F. Wypych. Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research, 2009, 12(1): 1.

DOI: 10.1590/s1516-14392009000100002

Google Scholar

[2] M. Farhoodi, S. Dadashi, S.M.A. Mousavi, R. Sotudeh-Gharebagh, Z. Emam-Djomeh, A. Oromiehie, F. Hemmati. Influence of TiO2 nanoparticle filler on the properties of PET and PLA Nanocomposites, Polymer Korea, 2012, 36(6): 745.

DOI: 10.7317/pk.2012.36.6.745

Google Scholar

[3] H. Lu, H. Wang, A. Zheng, H. Xiao. Hybrid poly (ethylene terephthalate)/silica nanocomposites prepared by in‐situ polymerization, Polymer composites, 2007, 28(1): 42.

DOI: 10.1002/pc.20311

Google Scholar

[4] H. Agrawal, S. Agarwal, V.K. Saraswat, Y.K. Saraswat, K. Awasthi. Synthesis and Crystallization Studies of Thermo-plastic Polyster/Titania Nanocomposites, (2014).

Google Scholar

[5] J.C. Viana, N.M. Alves, J.F. Mano. Morphology and mechanical properties of injection molded poly (ethylene terephthalate), Polymer Engineering & Science, 2004, 44(12): 2174.

DOI: 10.1002/pen.20245

Google Scholar

[6] L.M. d. Santos, C.L.P. Carone, S.M.O. Einloft, R.A. Ligabue. Preparation and properties of aromatic polyester/TiO2 nanocomposites from polyethylene terephthalate, Materials Research, 2016, (AHEAD): 0.

DOI: 10.1590/1980-5373-mr-2015-0203

Google Scholar

[7] A. Taniguchi, M. Cakmak. The suppression of strain induced crystallization in PET through sub micron TiO2 particle incorporation, Polymer, 2004, 45(19): 6647.

DOI: 10.1016/j.polymer.2004.06.056

Google Scholar

[8] Z. Liu, R. Wang, F. Kan, F. Jiang. Synthesis and Characterization of TiO2 Nanoparticles, Asian Journal of Chemistry, 2014, 26(3): 655.

Google Scholar

[9] G. Fortunato, A. Tenniche, L. Gottardo, R. Hufenus. Development of poly-(ethylene terephthalate) masterbatches incorporating highly dispersed TiO2 nanoparticles: Investigation of morphologies by optical and rheological procedures, European Polymer Journal, 2014, 57 75.

DOI: 10.1016/j.eurpolymj.2014.05.007

Google Scholar

[10] Y. Wang, J. Gao, Y. Ma, U.S. Agarwal. Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites, Composites Part B: Engineering, 2006, 37(6): 399.

DOI: 10.1016/j.compositesb.2006.02.014

Google Scholar

[11] X. Zhu, B. Wang, S. Chen, C. Wang, Y. Zhang, H. Wang. Synthesis and non-isothermal crystallization behavior of PET/surface-treated TiO2 nanocomposites, Journal of Macromolecular Science, Part B, 2008, 47(6): 1117.

DOI: 10.1080/00222340802403206

Google Scholar

[12] V. Ramesh, S. Mohanty, B. Panda, S. Nayak. Nucleation effect of surface treated TiO2 on Poly (trimethylene terephthalate)(PTT) nanocomposites, Journal of applied polymer science, 2013, 127(3): (1909).

DOI: 10.1002/app.37562

Google Scholar

[13] H.M. El-Dessouky, C.A. Lawrence. Nanoparticles dispersion in processing functionalised PP/TiO2 nanocomposites: distribution and properties, Journal of Nanoparticle Research, 2011, 13(3): 1115.

DOI: 10.1007/s11051-010-0100-6

Google Scholar

[14] J. He, W. Shao, L. Zhang, C. Deng, C. Li. Crystallization behavior and UV‐protection property of PET‐ZnO nanocomposites prepared by in situ polymerization, Journal of applied polymer science, 2009, 114(2): 1303.

DOI: 10.1002/app.30614

Google Scholar