[1]
C.R. Yang, Y.M. Zhang, B. Wang, Preparation and characterization of P(AN-co-VA-co-DEMA) fibers coated with multiwalled carbon nanotubes by electrostatic interactions, J. Appl. Polym. Sci., (2015).
DOI: 10.1002/app.42545
Google Scholar
[2]
R. Devasia, C.P. Reghunadhan Nair, K.N. Ninan, Temperature and shear dependencies of rheology of poly(acrylonitrile-co-itaconic acid) dope in DMF, Polym. Advan. Technol., 19 (2008) 1771-1778.
DOI: 10.1002/pat.1193
Google Scholar
[3]
L. Lei, J. Qiu, E. Sakai, Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization, Chem. Eng. J., 209 (2012) 20-27.
DOI: 10.1016/j.cej.2012.07.114
Google Scholar
[4]
J.H. Yang, S.H. Lin, Y.D. Lee, Preparation and characterization of poly(l-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator, J. Mater. Chem., 22 (2012) 10805-10815.
DOI: 10.1039/c2jm31312j
Google Scholar
[5]
M. Sabzi, L. Jiang, N. Nikfarjam, Graphene nanoplatelets as rheology modifiers for polylactic acid: Graphene aspect-ratio-dependent nonlinear rheological behavior, Ind. Eng. Chem. Res., 54 (2015) 8175-8182.
DOI: 10.1021/acs.iecr.5b01863
Google Scholar
[6]
X. Li, A. Qin, X. Zhao, D. Liu, H. Wang, C. He, Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning, Phys. Chem. Chem. Phys., 17 (2015).
DOI: 10.1039/c5cp02498f
Google Scholar
[7]
M. Bourourou, M. Holzinger, F. Bossard, F. Hugenell, A. Maaref, S. Cosnier, Chemically reduced electrospun polyacrilonitrile-carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications, Carbon, 87 (2015) 233-238.
DOI: 10.1016/j.carbon.2015.02.026
Google Scholar
[8]
A. Dey, O.P. Bajpai, A.K. Sikder, S. Chattopadhyay, M.A. Shafeeuulla Khan, Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting, Renew. Sust. Energ. Rev., 53 (2016) 653-671.
DOI: 10.1016/j.rser.2015.09.004
Google Scholar
[9]
C. Bao, L. Song, W. Xing, B. Yuan, C.A. Wilkie, J. Huang, Y. Guo, Y. Hu, Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending, J. Mater. Chem., 22 (2012).
DOI: 10.1039/c2jm16203b
Google Scholar
[10]
Y. Cao, J. Feng, P. Wu, Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites, Carbon, 48 (2010) 3834-3839.
DOI: 10.1016/j.carbon.2010.06.048
Google Scholar
[11]
B. Wang, J. Li, H. Wang, J. Jiang, Y. Liu, Rheological behavior of spinning dope of multiwalled carbon nanotube/polyacrylonitrile composites, Macromolecular Symposia, 2004, pp.189-194.
DOI: 10.1002/masy.200451218
Google Scholar
[12]
O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small, 6 (2010) 711-723.
DOI: 10.1002/smll.200901934
Google Scholar
[13]
S. Lee, Y.J. Kim, D.H. Kim, B.C. Ku, H.I. Joh, Synthesis and properties of thermally reduced graphene oxide/ polyacrylonitrile composites, J. Phys. Chem. Solids, 73 (2012) 741-743.
DOI: 10.1016/j.jpcs.2012.01.015
Google Scholar
[14]
F. Wu, Y. Lu, G. Shao, F. Zeng, Q. Wu, Preparation of polyacrylonitrile/graphene oxide by in situ polymerization, Polym. Int., 61 (2012) 1394-1399.
DOI: 10.1002/pi.4221
Google Scholar
[15]
W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339.
DOI: 10.1021/ja01539a017
Google Scholar
[16]
N.I. Kovtyukhova, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater., 11 (1999) 771-778.
DOI: 10.1021/cm981085u
Google Scholar
[17]
M.B. Müller, J.P. Quirino, P.N. Nesterenko, P.R. Haddad, S. Gambhir, D. Li, G.G. Wallace, Capillary zone electrophoresis of graphene oxide and chemically converted graphene, J. Chromatogr. A, 1217 (2010) 7593-7597.
DOI: 10.1016/j.chroma.2010.09.069
Google Scholar
[18]
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
DOI: 10.1016/j.carbon.2007.02.034
Google Scholar
[19]
J.A. King, M.D. Via, J.M. Keith, F.A. Morrison, Effects of carbon fillers on rheology of polypropylene-based resins, J. Compos. Mater., 43 (2009) 3073-3089.
DOI: 10.1177/0021998309345335
Google Scholar
[20]
L. Tan, D. Pan, N. Pan, Water effect on the rheologic behavior of PAN solution during thermal-induced gelation process, Polym. Advan. Technol., 22 (2011) 2279-2284.
DOI: 10.1002/pat.1758
Google Scholar
[21]
P.E. Mason, G.W. Neilson, C.E. Dempsey, A.C. Barnes, J.M. Cruickshank, The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution, P. Natl. Acad. Sci. USA., 100 (2003) 4557-4561.
DOI: 10.1073/pnas.0735920100
Google Scholar
[22]
H.H. Winter, F. Chambon, Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, J. Rheol., 30 (1986) 367-382.
DOI: 10.1122/1.549853
Google Scholar
[23]
A.L. Bortnuchik, A.D. Stepukhovich, I.S. Rabinovich, Spectroscopic investigation of intermolecular interactions in a sodium thiocyanate-water system, J. Appl. Spectrosc., 19 (1975) 923-925.
DOI: 10.1007/bf00606861
Google Scholar
[24]
Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: Melt rheological behavior and thermal, electrical, and electronic properties, Macromol. Chem. Phys., 212 (2011) 1951-(1959).
DOI: 10.1002/macp.201100263
Google Scholar