Rheological Behaviors of Graphene Oxide/Polyacrylonitrile Spinning Solutions

Article Preview

Abstract:

The rheological behaviors of polyacrylonitrile (PAN) in NaSCN aqueous solutions containing different amount of Graphene oxide (GO) were investigated through both steady-state and dynamic rheological measurements. The parameters such as apparent viscosity (ηα), flow activation energy (Eη), structural viscosity index (Δη), storage modulus (G’), loss modulus (G’’) and mechanical loss factor (tanδ) were measured to illustrate the rheological behaviors of these solutions. The results showed that the apparent viscosity decreased with adding appropriate amount of GO, while the structural viscosity index, the flow activation energy and the mechanical loss factor of GO/PAN spinning solutions increased. Accordingly, a possible mechanism of GO effect on rheological behaviors of PAN solution was proposed in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2187-2196

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.R. Yang, Y.M. Zhang, B. Wang, Preparation and characterization of P(AN-co-VA-co-DEMA) fibers coated with multiwalled carbon nanotubes by electrostatic interactions, J. Appl. Polym. Sci., (2015).

DOI: 10.1002/app.42545

Google Scholar

[2] R. Devasia, C.P. Reghunadhan Nair, K.N. Ninan, Temperature and shear dependencies of rheology of poly(acrylonitrile-co-itaconic acid) dope in DMF, Polym. Advan. Technol., 19 (2008) 1771-1778.

DOI: 10.1002/pat.1193

Google Scholar

[3] L. Lei, J. Qiu, E. Sakai, Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization, Chem. Eng. J., 209 (2012) 20-27.

DOI: 10.1016/j.cej.2012.07.114

Google Scholar

[4] J.H. Yang, S.H. Lin, Y.D. Lee, Preparation and characterization of poly(l-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator, J. Mater. Chem., 22 (2012) 10805-10815.

DOI: 10.1039/c2jm31312j

Google Scholar

[5] M. Sabzi, L. Jiang, N. Nikfarjam, Graphene nanoplatelets as rheology modifiers for polylactic acid: Graphene aspect-ratio-dependent nonlinear rheological behavior, Ind. Eng. Chem. Res., 54 (2015) 8175-8182.

DOI: 10.1021/acs.iecr.5b01863

Google Scholar

[6] X. Li, A. Qin, X. Zhao, D. Liu, H. Wang, C. He, Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning, Phys. Chem. Chem. Phys., 17 (2015).

DOI: 10.1039/c5cp02498f

Google Scholar

[7] M. Bourourou, M. Holzinger, F. Bossard, F. Hugenell, A. Maaref, S. Cosnier, Chemically reduced electrospun polyacrilonitrile-carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications, Carbon, 87 (2015) 233-238.

DOI: 10.1016/j.carbon.2015.02.026

Google Scholar

[8] A. Dey, O.P. Bajpai, A.K. Sikder, S. Chattopadhyay, M.A. Shafeeuulla Khan, Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting, Renew. Sust. Energ. Rev., 53 (2016) 653-671.

DOI: 10.1016/j.rser.2015.09.004

Google Scholar

[9] C. Bao, L. Song, W. Xing, B. Yuan, C.A. Wilkie, J. Huang, Y. Guo, Y. Hu, Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending, J. Mater. Chem., 22 (2012).

DOI: 10.1039/c2jm16203b

Google Scholar

[10] Y. Cao, J. Feng, P. Wu, Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites, Carbon, 48 (2010) 3834-3839.

DOI: 10.1016/j.carbon.2010.06.048

Google Scholar

[11] B. Wang, J. Li, H. Wang, J. Jiang, Y. Liu, Rheological behavior of spinning dope of multiwalled carbon nanotube/polyacrylonitrile composites, Macromolecular Symposia, 2004, pp.189-194.

DOI: 10.1002/masy.200451218

Google Scholar

[12] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small, 6 (2010) 711-723.

DOI: 10.1002/smll.200901934

Google Scholar

[13] S. Lee, Y.J. Kim, D.H. Kim, B.C. Ku, H.I. Joh, Synthesis and properties of thermally reduced graphene oxide/ polyacrylonitrile composites, J. Phys. Chem. Solids, 73 (2012) 741-743.

DOI: 10.1016/j.jpcs.2012.01.015

Google Scholar

[14] F. Wu, Y. Lu, G. Shao, F. Zeng, Q. Wu, Preparation of polyacrylonitrile/graphene oxide by in situ polymerization, Polym. Int., 61 (2012) 1394-1399.

DOI: 10.1002/pi.4221

Google Scholar

[15] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[16] N.I. Kovtyukhova, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater., 11 (1999) 771-778.

DOI: 10.1021/cm981085u

Google Scholar

[17] M.B. Müller, J.P. Quirino, P.N. Nesterenko, P.R. Haddad, S. Gambhir, D. Li, G.G. Wallace, Capillary zone electrophoresis of graphene oxide and chemically converted graphene, J. Chromatogr. A, 1217 (2010) 7593-7597.

DOI: 10.1016/j.chroma.2010.09.069

Google Scholar

[18] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[19] J.A. King, M.D. Via, J.M. Keith, F.A. Morrison, Effects of carbon fillers on rheology of polypropylene-based resins, J. Compos. Mater., 43 (2009) 3073-3089.

DOI: 10.1177/0021998309345335

Google Scholar

[20] L. Tan, D. Pan, N. Pan, Water effect on the rheologic behavior of PAN solution during thermal-induced gelation process, Polym. Advan. Technol., 22 (2011) 2279-2284.

DOI: 10.1002/pat.1758

Google Scholar

[21] P.E. Mason, G.W. Neilson, C.E. Dempsey, A.C. Barnes, J.M. Cruickshank, The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution, P. Natl. Acad. Sci. USA., 100 (2003) 4557-4561.

DOI: 10.1073/pnas.0735920100

Google Scholar

[22] H.H. Winter, F. Chambon, Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, J. Rheol., 30 (1986) 367-382.

DOI: 10.1122/1.549853

Google Scholar

[23] A.L. Bortnuchik, A.D. Stepukhovich, I.S. Rabinovich, Spectroscopic investigation of intermolecular interactions in a sodium thiocyanate-water system, J. Appl. Spectrosc., 19 (1975) 923-925.

DOI: 10.1007/bf00606861

Google Scholar

[24] Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: Melt rheological behavior and thermal, electrical, and electronic properties, Macromol. Chem. Phys., 212 (2011) 1951-(1959).

DOI: 10.1002/macp.201100263

Google Scholar