[1]
Łągiewka M. Mechanical and Tribological Properties of Metal Matrix Composites Reinforced with Short Carbon Fibre. Archives of Metallurgy and Materials. 2014, 59 (2): 707-11.
DOI: 10.2478/amm-2014-0116
Google Scholar
[2]
Hashim J, Looney L, Hashmi M. Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology. 1999, 92: 1-7.
DOI: 10.1016/s0924-0136(99)00118-1
Google Scholar
[3]
Chand S. Review carbon fibers for composites. Journal of Materials Science. 2000, 35 (6): 1303-13.
Google Scholar
[4]
Park S-J, Cho M-S. Effect of anti-oxidative filler on the interfacial mechanical properties of carbon–carbon composites measured at high temperature. Carbon. 2000, 38 (7): 1053-8.
DOI: 10.1016/s0008-6223(99)00210-9
Google Scholar
[5]
Arsenault R, Wang L, Feng C. Strengthening of composites due to microstructural changes in the matrix. Acta metallurgica et materialia. 1991, 39 (1): 47-57.
DOI: 10.1016/0956-7151(91)90327-w
Google Scholar
[6]
Metcalfe A. Interface in Metal Matrix Composites, vol. 1. Academic Press, New York; (1974).
Google Scholar
[7]
Wang Y-Q, Zhou B-L. Behaviour of coatings on reinforcements in some metal matrix composites. Composites Part A: Applied Science and Manufacturing. 1996, 27 (12): 1139-45.
DOI: 10.1016/1359-835x(96)00072-3
Google Scholar
[8]
Diwanji A, Hall I. Fibre and fibre-surface treatment effects in carbon/aluminium metal matrix composites. Journal of materials science. 1992, 27 (8): 2093-100.
DOI: 10.1007/bf01117922
Google Scholar
[9]
Tham L, Gupta M, Cheng L. Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Materialia. 2001, 49 (16): 3243-53.
DOI: 10.1016/s1359-6454(01)00221-x
Google Scholar
[10]
Seong H, Lopez H, Robertson D, Rohatgi P. Interface structure in carbon and graphite fiber reinforced 2014 aluminum alloy processed with active fiber cooling. Materials Science and Engineering: A. 2008, 487 (1): 201-9.
DOI: 10.1016/j.msea.2007.10.081
Google Scholar
[11]
Chen H, Alpas A. Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres. Wear. 1996, 192 (1): 186-98.
DOI: 10.1016/0043-1648(95)06795-7
Google Scholar
[12]
Hua Z, Liu Y, Yao G, Wang L, Ma J, Liang L. Preparation and characterization of nickel-coated carbon fibers by electroplating. Journal of materials engineering and performance. 2012, 21 (3): 324-30.
DOI: 10.1007/s11665-011-9958-4
Google Scholar
[13]
Vidal-Setif M, Lancin M, Marhic C, Valle R, Raviart J-L, Daux J-C, et al. On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites. Materials Science and Engineering: A. 1999, 272 (2): 321-33.
DOI: 10.1016/s0921-5093(99)00487-6
Google Scholar
[14]
Warrier S, Blue C, Lin R. Control of interfaces in Al-C fibre composites. Journal of materials science. 1993, 28 (3): 760-8.
Google Scholar
[15]
Yang H, Gu M, Jiang W, Zhang G. Interface microstructure and reaction in Gr/Al metal matrix composites. Journal of materials science. 1996, 31 (7): 1903-7.
DOI: 10.1007/bf00372206
Google Scholar
[16]
Lin RY. Interface evolution in aluminum matrix composites during fabrication. Key Engineering Materials; Trans Tech Publ; 1995. pp.507-22.
DOI: 10.4028/www.scientific.net/kem.104-107.507
Google Scholar
[17]
Rasmussen FE, Ravnkilde JT, Tang PT, Hansen O, Bouwstra S. Electroplating and characterization of cobalt–nickel–iron and nickel–iron for magnetic microsystems applications. Sensors and Actuators A: Physical. 2001, 92 (1): 242-8.
DOI: 10.1016/s0924-4247(01)00556-8
Google Scholar
[18]
Ning Z-H, He Y-D. Rapid electroplating of Cu coatings by mechanical attrition method. Transactions of Nonferrous Metals Society of China. 2008, 18 (5): 1100-6.
DOI: 10.1016/s1003-6326(08)60188-0
Google Scholar
[19]
Zhang Z, Leng W, Cai Q, Cao F, Zhang J. Study of the zinc electroplating process using electrochemical noise technique. Journal of electroanalytical Chemistry. 2005, 578 (2): 357-67.
DOI: 10.1016/j.jelechem.2005.01.029
Google Scholar
[20]
Abe H, Yoshii K, Nishida K, Imai M, Kitazawa H. Electroplating of the superconductive boride MgB 2 from molten salts. Journal of Physics and Chemistry of Solids. 2005, 66 (2): 406-9.
DOI: 10.1016/j.jpcs.2004.06.051
Google Scholar
[21]
Datta M, Landolt D. Fundamental aspects and applications of electrochemical microfabrication. Electrochimica acta. 2000, 45 (15): 2535-58.
DOI: 10.1016/s0013-4686(00)00350-9
Google Scholar
[22]
Ahmed A-MM, Abdel-Rahman AA-H, El Adl AF. Electroplating of Copper in the Presence of 5, 6-Dihydropyrimidine-2-(1H)-thione, 2-Methylthiopyrimidine-4-(1H)-one, 2-Thiopyrimidine-4- (1H)-ones, and 2, 4-Pyrimidine (1H, 3H)-dione Derivatives as Organic Additives. Journal of Dispersion Science and Technology. 2011, 32 (3): 453-63.
DOI: 10.1080/01932690903232279
Google Scholar
[23]
Grujicic D, Pesic B. Electrodeposition of copper: the nucleation mechanisms. Electrochimica Acta. 2002, 47 (18): 2901-12.
DOI: 10.1016/s0013-4686(02)00161-5
Google Scholar
[24]
Park S-J, Seo M-K, Lee Y-S. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon. 2003, 41 (4): 723-30.
DOI: 10.1016/s0008-6223(02)00384-6
Google Scholar
[25]
Ko TH, Lin CH, Ting HY. Structural changes and molecular motion of polyacrylonitrile fibers during pyrolysis. Journal of applied polymer science. 1989, 37 (2): 553-66.
DOI: 10.1002/app.1989.070370220
Google Scholar