Human Dermal Fibroblast Adhesion on Ti-7.5Mo after TiO2 Nanotubes Growth

Article Preview

Abstract:

Vertically aligned TiO2 nanotubes have been grown on Ti-7.5Mo by anodization and the growth of human dermal fibroblast on such nanotubes were investigated. The TiO2 nanotubes were characterized by means of field emission scanning electron microscopy (FEG-SEM) and X-ray diffraction (XRD). To characterize the cell morphology and viability it was used a scanning electron microscope and MTT assay after 1, 4 and 7 days cell. The results showed that cell proliferation was evident over the duration of experiment, but it was higher at day 4 on polished Ti-7.5Mo.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-200

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Lin, I. S Lee, Y. J Choi, I. S Noh, S. M Chung: Biomed. Mater. Vol. 4 (2009), p.1.

Google Scholar

[2] M. M Barreiro, D. R Grana, G. A Kokubu, M. I Luppo, S. Mintzer, G. Vigna: Biomed. Mater. Vol. 5 (2010), p.7.

Google Scholar

[3] A.L. A Escada, J.P. B Machado, S. G Schneider, M.C. R Alves Rezende, A.P.R. Alves Claro: Journal of Materials Science. Materials in Medicine Vol. 22 (2011), p.2457.

Google Scholar

[4] A.L. A Escada, D. Rodrigues Jr, A.P. R Alves Claro: Surface & Coatings Technology Vol. 205 (2010), p.383.

Google Scholar

[5] A.P.R. Alves Claro, F.A. Santana, L.A. A Rosa, S.A. Cursino, E.N. Codaro: Mater. Sci. Eng. C Vol. 4 (2004), p.693.

Google Scholar

[6] T. G Niemeyer, C.R. Grandini, L.M.C. Pinto, A.C.D. Angelo, S.G. Schneider: J. Alloy Comp. Vol. 476 (2009), p.172.

Google Scholar

[7] D.J. Lin, C.C. Chuang, J.H.C. Lin, J.W. Lee, C.P. Ju, H.S. Yin: Biomaterials Vol. 28 (2007), p.2582.

Google Scholar

[8] D. R. Sumner, T.M. Turner, R. Igloria, R.M. Urban, J.O. Galante: J. Biomech. Vol. 31 (1998), p.909.

Google Scholar

[9] V. Sollazzo, F. Pezzetti, A. Scarano, A. Piattelli, C.A. Bignozz, L. Massari, G. Brunelli, F. Carinci: Dent. Mater. Vol. 24 (2008), p.357.

DOI: 10.1016/j.dental.2007.06.003

Google Scholar

[10] C. Yao, E.B. Slamovich, T.J. Webster: J. Biomed. Mater. Res. A Vol. 85 (2008), p.157.

Google Scholar

[11] K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin: Acta Biomater. Vol. 5 (2009), p.3215.

Google Scholar

[12] K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes: Nanotechnology Vol. 18 (2007), p.065707.

DOI: 10.1088/0957-4484/18/6/065707

Google Scholar

[13] L.F. Cooper: J. Prosthet. Dent. Vol. 84 (2000), p.522.

Google Scholar

[14] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen: J. Mater. Res. Vol. 16 (2001), p.3331.

Google Scholar

[15] G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes: J. Mater. Res. Vol. 18 (2003), p.2588.

Google Scholar

[16] S. Oh, C. Daraio, L.H. Chen, T.R. Pisanic, R.R. Fiñones, S. Jin: J. Biomed. Mater. Res. A Vol. 78 (2006), p.97.

Google Scholar

[17] W. Yu, X. Jiang, F. Zhang, L. Xu: J Biomed Mater Res Vol. 94 A (2010), p.1012.

Google Scholar

[18] L. Shu-Ping, S. Huang, S. Chen, L. U. Vinzons, J. Ciou, P. Wong: Appl. Mater. Interfaces Vol. 6 (2014), p.12071.

Google Scholar

[19] X.H. Wu, J. Liang, J.F. Mei, C. Mitchell, P.S. Goodwin, W. Voice: Mater. Design Vol. 25 (2004), p.137.

Google Scholar