Influence of the pH and Stirring Speed of the Electrodeposition Bath in the Performance of Zinc and Zinc-Nanocomposite Coatings

Article Preview

Abstract:

With the increase of environmental restrictions, chromium and cadmium-based coatings have been replaced by zinc layers. These coatings can be obtained through electrodeposition, whose industrially established pH range is from 5.0 to 5.8, and stirring speed is uncontrolled, which has led to part rejections. In addition, the corrosion resistance of zinc coatings is inferior to cadmium and chromium coatings, which has boosted the research of zinc composite coatings. The proposed work presents the performance of zinc-bentonite composite coatings in regards to corrosion relating to pH variation and stirring speed. The samples were degreased for 5 minutes in a commercial degreasing solution at a temperature of 55 °C, with magnetic stirring and, posteriorly, submitted to a pickling process with a duration of 1 to 2 minutes in a commercial bath, followed by a washing process with deionized water. The electrolyte used for electrodeposition was a zinc bath with a chemical composition of 85 g/l ZnCl2, 210 g/l KCl and 25 g/l H3BO3. For the zinc-bentonite electrodepositions 20 g/l of bentonite nanoparticles was added to the bath. Zinc and zinc-bentonite coatings were characterized by scanning electron microscopy, open circuit potential and potentiodynamic polarization. This work shows that a 5.2 pH is the most recommended for the zinc electrodeposition process. Potentiodynamic polarization tests indicated that pure zinc coatings developed in the stirring speed of 380 rpm and zinc-bentonite produced in the stirring speed of 710 rpm showed the best results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-288

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Gang, L. Jintang, W. Haijiang: J. Rare Earths Vol. 27 (2009), p.164.

Google Scholar

[2] C.M.A. Freire, R.G. Tannuri; Estudos do processo de eletrodeposição de zinco com partículas de terras raras. XVII Congresso interno de Iniciação Científica da Unicamp, Faculdade Mecânica – FEM-UNICAMP, São Paulo, setembro, (2009).

DOI: 10.19146/pibic-2017-77819

Google Scholar

[3] T.L. Menezes: Elaboração e Caracterização de Revestimentos Compósitos de Zinco com Talco e Bentonita. Mestrado (Dissertação). Porto Alegre, 2008. Universidade Federal do Rio Grande do Sul (UFRGS). (RS).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[4] F.R.V. Díaz; A.R. Morales; L.B. Paivai: Cerâmica Vol. 54 (2008).

Google Scholar

[5] B. Kavitha; P. Santhosh; M. Renukadevi; A. Kalpana; P. Shakkthivel; T. Vasudevan: Surface & Coatings Technology Vol. 201 (2006), p.3438.

DOI: 10.1016/j.surfcoat.2006.07.235

Google Scholar

[6] F.W. Eppensteiner M.R. Jenkins: Metal Finishing Vol. 99 (1) (2001), p.494.

Google Scholar

[7] C. Mafaltti: Elaboração e caracterização de revestimentos nanocompósitos Ni-P-SiC eletrodepositados Doutorado (Tese). Porto Alegre, 2004. Universidade Federal do Rio Grande do Sul (UFRGS). (RS).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[8] C.F. Malfatti; H.M. Veit; T.L. Menezes; J.Z. Ferreira; J.S. Rodrigues; J.P. Bonino: Surface & Coatings Technology Vol. 201 (2007), p.6318.

DOI: 10.1016/j.surfcoat.2006.11.040

Google Scholar

[9] V. Barranco; S. Feliu Jr.; S. Feliu: Corrosion Science Vol. 46 (2004), p.2203.

Google Scholar

[10] Y. Hamlaoui; F. Pedraza; L. Tifouti: Corrosion Science Vol. 50 (2008), p.1558.

Google Scholar

[11] D. Sylla; C. Savall; M. Gadouleau; C. Rebere; J. Creus; P.H. Refait: Surface & Coatings Technology Vol. 200 (2005), p.2137.

DOI: 10.1016/j.surfcoat.2004.11.020

Google Scholar

[12] C. Savall; C. Rebere; D. Sylla; M. Gadouleau; Ph. Refait; J. Creus: Materials Science and Engineering A Vol. 430 (2006), p.165.

DOI: 10.1016/j.msea.2006.05.025

Google Scholar

[13] A. Hovestad; R.J.C.H.L. Heesen; L.J.J. Janssen: J. Applied Electrochemistry Vol. 29 (1999), p.331.

Google Scholar