B-H Loop of Sintered Stainless Steel 410 Adjusted by Superellipse Model

Article Preview

Abstract:

B-H loop obtained from frequencies higher than 40 Hz can be satisfactorily adjusted by Superellipse model. Examples of application of the Superellipse model for sintered stainless steel 410 are presented. The parameters of model (four parameters) may have assigned physical meanings that reveal magnetic behavior, such as coercivity and remanence. Furthermore, they are directly related to the aesthetics of the B-H loop. The Superellipse model is very versatile, describing the most closed shapes (rods) and the more open (rectangular). The obtained parameter values reflect the magnetic variability of sample. In addition, by applying the model it was possible to analyze the magnetic and structural properties of a sintered stainless steel sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

554-558

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.C. Stoner, E. P. Wohlfarth: IEEE Transactions on Magnetics Vol. 27 (1991), p.3475.

Google Scholar

[2] M.F. de Campos, F.A. Sampaio da Silva, E. Perigo, J.A. de Castro. Journal of Magnetism and Magnetic Materials Vol. 345 (2013), p.147.

DOI: 10.1016/j.jmmm.2013.06.028

Google Scholar

[3] M.F. de Campos, F.A.S. da Silva, J.A. de Castro: Materials Science Forum Vols 775-776 (2014), p.431.

Google Scholar

[4] Radosław Jedynak; Rheol Acta Vol. 54 (2015), p.29.

Google Scholar

[5] F.A. Sampaio da Silva, E.E.G. Rojas, S.A. Romero, M.F. de Campos: Materials Science Forum Vol. 802 (2014), p.535.

Google Scholar

[6] D.C. Jiles and D.L. Atherton: Journal of Magnetism and Magnetic Materials Vol. 61 (1986), p.48.

Google Scholar

[7] F.A. Sampaio da Silva, M.F. de Campos: Materials Science Forum Vols. 727-728 (2012), p.130.

Google Scholar

[8] H.L. Armstrong: Electrical Engineering Vol. 74 (1955), p.1060.

Google Scholar

[9] Xiaoming Zhang, Paul L. Rosin: Pattern Recognition Vol. 36 (2003), p.743.

Google Scholar

[10] M. Gardner: Mathematical Carnival. (The Mathematical Association of America. Washington, 1989).

Google Scholar

[11] E. Callen, Y.J. Liu and J.R. Cullen: Physical Review B Vol. 16 (1977), p.263.

Google Scholar

[12] G.C. Hadjipanayis, W. Gong: J. Appl. Phys. Vol. 64 (1988), p.5559.

Google Scholar

[13] G. Hadjipanayis, P. Gaunt. J. Appl. Phys. 52 (1981) (2093).

Google Scholar

[14] M.F. de Campos, S.A. Romero, F. AS. da Silva, J.A. de Castro: J. Supercond. Nov. Magn. Vol. 28 (2015), p.847.

Google Scholar

[15] S.A. Romero, M.F. de Campos, H. Rechenberg and F. P. Missell: Journal of Magnetism and Magnetic Materials Vol. 320 (2008), p. e73.

DOI: 10.1016/j.jmmm.2008.02.055

Google Scholar

[16] M.F. de Campos, D. Rodrigues, G.V. Concílio, F.A.S. da Silva, J.A. de Castro: Magnetic Power Losses in Sintered 410L Stainless Steels,. In PTECH (2015).

Google Scholar