Numerical Simulation and Experimental Study of Particle Dynamics in a Rotating Drum with Flights

Article Preview

Abstract:

Rotary dryers are widely used in various industries. Although numerous research efforts have focused on characterizing the dynamics of these equipments, the design of rotating dryers is complex, and theoretical studies are necessary to gain an in-depth understanding of the dynamics of particles in these dryers. This paper aims to investigate the particle dynamic behavior in a rotating drum with flights, based on CFD and experimental results. In the numerical study it was used the Eulerian-Eulerian multiphase model along with the kinetic theory of granular flow. The holdups of solids in the flights were compared with experimental data, using a methodology created specifically for this purpose. The simulated results were in good agreement with the experimental data and the present work has shown that the Eulerian approach has been able to predict the fluid dynamics behavior in different operating conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A.S. Barrozo, F.B. Freire, D.J.M. Sartori, J.T. Freire: Drying Technol. Vol. 23 (2005), p.1451.

Google Scholar

[2] O.O. Ajayi: Multiscale modelling of industrial flighted rotary dryers. PhD thesis, James Cook University, (2011).

Google Scholar

[3] M.H. Lisboa, D.S. Vitorino, W.B. Delaiba, J.R.D. Finzer and M.A.S. Barrozo: Brazilian Journal of Chemical Engineering Vol. 24 (2007), p.365.

DOI: 10.1590/s0104-66322007000300006

Google Scholar

[4] B.C. Silvério, K.G. Santos, C.R. Duarte, M.A.S. Barrozo: Ind. Eng. Chem. Res. Vol. 53 (2014), p.8920.

Google Scholar

[5] E.B. Arruda, J.M.F. Façanha, L.N. Pires, A. J. Assis, M. A. S. Barrozo: Chem. Eng. Process Vol. 48 (2009), p.1414.

Google Scholar

[6] F.S. Lobato, V. Steffen Jr., E.B. Arruda, M.A.S. Barrozo: J. Phys. Conf. Ser. Vol. 135 (2008).

Google Scholar

[7] N.J. Fernandes, C.H. Ataíde, M.A.S. Barrozo: Braz. J. Chem. Eng. Vol. 26 (2009), p.331.

Google Scholar

[8] L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Chem. Eng. Process. Process Intensif. Vol. 49 (2010), p.460.

Google Scholar

[9] D.O. Silva, L.M. Tamiozzo, C.R. Duarte, V.V. Murata, M.A.S. Barrozo: Drying Technol. Vol. 29 (2011), p.286.

Google Scholar

[10] D.A. Santos, I.J. Petri, C.R. Duarte, M.A.S. Barrozo: Powder Technol. Vol. 250 (2013), p.52.

Google Scholar

[11] F.G. Cunha, K.G. Santos, C.H. Ataíde, N. Epstein, M.A.S. Barrozo: Ind. Eng. Chem. Res. Vol. 48 (2009), p.976.

Google Scholar

[12] M.A.S. Barrozo, C.R. Duarte, N. Epstein, J.R. Grace, C.J. Lim: Ind. Eng. Chem. Res. Vol. 49 (2010), p.5102.

Google Scholar

[13] K.G. Santos, V.V. Murata, M.A.S. Barrozo: Can. J. Chem. Eng. Vol. 87 (2009), p.211.

Google Scholar

[14] D.C. Oliveira, C.A.K. Almeida, L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Braz. J. Chem. Eng. Vol. 26 (2009), p.575.

Google Scholar

[15] F.A.R. Pereira, M. A. S. Barrozo, C. H. Ataíde: Braz. J. Chem. Eng. Vol. 24 (2007), p.587.

Google Scholar

[16] C.R. Duarte, J.L.V. Neto, M.H. Lisboa, R.C. Santana, M.A.S. Barrozo, V.V. Murata: Braz. J. Chem. Eng. Vol. 21 (2004), p.59.

Google Scholar

[17] M.A. Santos, R.C. Santana, F. Capponi, C.H. Ataíde, M.A.S. Barrozo: Sep. Purif. Technol. Vol. 76 (2010), p.15.

Google Scholar

[18] M.S. Oliveira, R.C. Guimarães, C.H. Ataíde, M.A.S. Barrozo: Minerals Eng. Vol. 20 (2007), p.197.

Google Scholar

[19] S.M. Nascimento, D.A. Santos, M.A.S. Barrozo, C.R. Duarte: Powder Technol. Vol. 280 (2015), p.18.

Google Scholar