Fabrication and Microstructure Evaluation of Fibrous Composite for Acetabular Labrum Implant

Article Preview

Abstract:

This paper will report the fabrication process and microstructure analysis of fibrous composite incorporating ultra-high molecular weight polyethylene (UHMWPE) fabric, electrospun polycaprolactone (PCL), and bioglass particles. Briefly, electrospinning was performed to form PCL fibre lamination in the surface of UHMWPE fabric. This UHMWPE/PCL material was then bioglass-coated. Sequentially, microstructure of the UHMWPE fabric, UHMWPE/PCL, and UHMWPE/PCL/bioglass was imaged and analysed. The composite showed aligned ultrafine PCL fibres and distribution of bioglass particles in the layer of electrospun PCL. The results of this study provide groundwork for more advanced investigation, as well as development of implant prototype.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Seldes, et al.: Clinical Orthopaedics and Related Research Vol. 382 (2001), pp.232-240.

Google Scholar

[2] A.D. Grant, D.A. Sala, and R.I. Davidovitch: Journal of Children's Orthopaedics Vol. 6 (2012), p.357–372.

Google Scholar

[3] S.J. Ferguson, et al.: Clinical Biomechanics Vol. 15 (2000).

Google Scholar

[4] R. Ganz, et al.: Clin Orthop Relat Res Vol. (2003), pp.112-20.

Google Scholar

[5] D.K. Matsuda: Arthroscopy Techniques Vol. 1 (2012), pp. e15-e21.

Google Scholar

[6] R. Sierra and R. Trousdale: Clinical Orthopaedics and Related Research Vol. 467 (2009), pp.753-759.

Google Scholar

[7] L. Ejnisman, M.J. Philippon, and P. Lertwanich: Clinical Sport Medicine Vol. (2011).

Google Scholar

[8] L. Ejinsman and M.J. Philippon: Operative Techniques in Sports Medicine Vol. 19 (2011), pp.134-139.

Google Scholar

[9] P.P. Deshmane, et al.: Arthroscopy techniques Vol. 2 (2013), p. e15.

Google Scholar

[10] L.L. Hench: Biomaterials Vol. 19 (1998), pp.1419-1423.

Google Scholar

[11] K. Messner: Biomaterials Vol. 15 (1994), pp.223-230.

Google Scholar

[12] K. Messner: Biomaterials Vol. 15 (1994), pp.243-250.

Google Scholar

[13] K. Sommerlath, M. Gallino, and J. Gillquist: Clinical Biomechanics Vol. 7 (1992), pp.97-103.

Google Scholar

[14] T.G. v. Tienen, G. Hannink, and P. Buma: Clinical Journal of Sport Medicine Vol. 28 (2009), p.143–156.

Google Scholar

[15] A.C.T. Vrancken, P. Buma, and T.G. Tienen: International Orthopaedics Vol. 37 (2013), pp.291-299.

Google Scholar

[16] K. Miller, J.E. Hsu, and L.J. Soslowsky, in: Comprehensive Biomaterials, edited by K. Miller, J.E. Hsu, and L.J. Soslowsky ElsevierOxford (2011).

DOI: 10.1016/b978-0-08-055294-1.00218-x

Google Scholar

[17] R. Mascarenhas and P.B. MacDonald: McGill Journal of Medicine Vol. 11 (2008), p.29–37.

Google Scholar

[18] C. Legnani, et al.: International Orthopaedics Vol. 34 (2010), pp.465-471.

Google Scholar

[19] Y. -S. Gloy, et al.: Annals of Biomedical Engineering Vol. 41 (2013), p.1950-(1956).

Google Scholar

[20] M. -F. Guidoin, et al.: Biomaterials Vol. 21 (2000), pp.2461-2474.

Google Scholar

[21] K. Kadoya, et al.: SPINE Vol. 26 (2001), p.1562–1569.

Google Scholar

[22] Y. Kotani, et al.: Spine Vol. 27 (2002), p.929–936.

Google Scholar

[23] M. Takahata, et al.: Spine Vol. 28 (2003), p.637–644.

Google Scholar

[24] Y. Shikinami, et al.: Advanced Functional Materials Vol. 14 (2004), pp.1039-1046.

Google Scholar

[25] Y. Shikinami, et al.: The Spine Journal Vol. 10 (2010), p.141–152.

Google Scholar

[26] J.L. Holloway, A.M. Lowman, and G.R. Palmese: Acta Biomaterialia Vol. 6 (2010), pp.4716-4724.

Google Scholar

[27] W. -J. Li, et al.: Acta Biomaterialia Vol. 2 (2006), pp.377-385.

Google Scholar

[28] C.Z. Liu and J.T. Czernuszka: Materials Science and Technology Vol. 23 (2007), pp.379-391.

Google Scholar

[29] G. Luckachan and C.K.S. Pillai: Journal of Polymers and the Environment Vol. 19 (2011), pp.637-676.

Google Scholar

[30] M.A. Woodruff and D.W. Hutmacher: Progress in Polymer Science Vol. 35 (2010), pp.1217-1256.

Google Scholar

[31] L.L. Hench: Journal of Materials Science Vol. 17 (2006), p.967–978.

Google Scholar

[32] J.R. Jones: Acta Biomaterialia Vol. 9 (2013), p.4457–4486.

Google Scholar

[33] A. Sola, et al.: Surface Engineering Vol. 27 (2011), pp.560-572.

Google Scholar

[34] R.M. Day, et al.: Biomaterials Vol. 25 (2004), pp.5857-5866.

Google Scholar

[35] S. Verrier, et al.: Biomaterials Vol. 25 (2004), pp.3013-3021.

Google Scholar

[36] A. Stamboulis, L.L. Hench, and A.R. Boccaccini: Journal of Materials Science: Materials in Medicine Vol. 13 (2002), pp.843-8.

DOI: 10.1023/a:1016544211478

Google Scholar

[37] H. Li, et al.: Int Orthop Vol. 36 (2012), pp.191-7.

Google Scholar

[38] N. Tellisi and N. Ashammakhi: European Journal of Plastic Surgery Vol. 35 (2012), pp.159-170.

Google Scholar

[39] J. Wu, et al.: PLoS One Vol. 8 (2013), p. e71563.

Google Scholar

[40] W. Petersen, F. Petersen, and B. Tillmann: Archives of Orthopaedic and Trauma Surgery Vol. 123 (2003), pp.283-288.

Google Scholar

[41] J.S. Bach, et al.: Journal of Biomechanics Vol. 46 (2013), pp.1463-1470.

Google Scholar

[42] A.I. Karaman, N. Kir, and S. Belli: American Journal of Orthodontics and Dentofacial Orthopedics Vol. 121 (2002), pp.650-654.

DOI: 10.1067/mod.2002.123818

Google Scholar

[43] D.M. Elliott, et al., in: Comprehensive Biomaterials, edited by D.M. Elliott, et al. ElsevierOxford (2011).

Google Scholar

[44] B. Gantenbein-Ritter and D. Sakai, in: Comprehensive Biomaterials, edited by B. Gantenbein-Ritter and D. Sakai ElsevierOxford (2011).

DOI: 10.1016/b978-0-08-055294-1.00210-5

Google Scholar

[45] A. Anindyajati, P. Boughton, and A. Ruys: MATEC Web of Conferences Vol. 27 (2015), p.02002.

DOI: 10.1051/matecconf/20152702002

Google Scholar

[46] N.L. Nerurkar, et al.: Spine Vol. 35 (2010), pp.867-873.

Google Scholar

[47] L. Koepsell, et al.: Journal of Biomedical Materials Research Part A Vol. 99A (2011), pp.564-575.

Google Scholar

[48] J.A. Roether, et al.: Biomaterials Vol. 23 (2002), pp.3871-8.

Google Scholar

[49] A.G. Stamboulis, A.R. Boccaccini, and L.L. Hench: Advanced Engineering Materials Vol. 4 (2002), pp.105-109.

Google Scholar

[50] S. Agarwal, J.H. Wendorff, and A. Greiner: Polymer Vol. 49 (2008), pp.5603-5621.

Google Scholar

[51] W. -J. Li, et al.: Journal of Biomechanics Vol. 40 (2007), pp.1686-1693.

Google Scholar

[52] B.M. Baker and R.L. Mauck: Biomaterials Vol. 28 (2007), p.1967-(1977).

Google Scholar

[53] L. Koepsell, et al.: Macromolecular Bioscience Vol. 11 (2011), pp.391-399.

Google Scholar