Synthesis and Antibacterial Activities of N-Phenylpyrazolines from Veratraldehyde

Article Preview

Abstract:

Some novel N-phenylpyrazolines were synthesized and investigated for their antibacterial activitiy. Chalcones 2-4 which were prepared from acetophenone and veratraldehyde derivatives were reacted with phenylhydrazine to give N-phenylpyrazolines 5-7. All of the synthesized compounds were characterized using FTIR, GC-MS, and NMR spectrometers. Further, antibacterial activity of N-phenylpyrazolines were evaluated by agar well-diffusion method against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Shigella flexneri. The highest activity (highest inhibition zone) of compound 5 was 2.6 mm (at 1000 ppm) against B. subtillis, compound 6 was 7.25 mm (at 1000 ppm) against S. aureus, and compound 7 was 6.75 mm (at 500 ppm) against S. aureus. The results indicated that compound 6 and 7 exhibited promising antibacterial activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-132

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Alanis, Resistance to antibiotics: are we in the post-antibiotic era?, Arch. Med. Res., 36 (2005) 697-705.

Google Scholar

[2] D. Vijayvergiya, S. Kothari and B. L. Verma, Synthesis and biological activity of some new 3, 5-diaryl-1-phenyl/isonicotinoyl-2-pyrazolines, Ind. J. Het. Chem., 13 (2003) 105-110.

Google Scholar

[3] M. G. Mamolo, D. Zampieri, V. Falagiani, L. Vio and E. Banfi, Synthesis and antifungal activity of (±)-1- (5-aryl -3- pyridin -2-yl -4, 5- dihydro- pyrazol -1- yl) -2- imidazol -1- yl -ethanone derivatives, Il Farmaco, 58 (2003) 315-322.

DOI: 10.1016/s0014-827x(02)00006-x

Google Scholar

[4] M. S. Yar, M. A. Bakht, A. A. Siddiqui, M. M. Abdullah and E. D. Clercq, Synthesis and evaluation of in vitro antiviral activity of novel phenoxy acetic acid derivatives, J. Enzym. Inhib. Med. Chem., 24, 3 (2009) 876-882.

DOI: 10.1080/14756360802447917

Google Scholar

[5] F. Manna., F. Chimenti, R. Fioravanti, A. Bolasco, D. Secci, P. Chimenti, C. Ferlini and G. Scambia, Synthesis of some pyrazole derivatives and preliminary investigation of their affinity binding to P-glycoprotein, Bioorg. Med. Chem. Lett., 15 (2005).

DOI: 10.1016/j.bmcl.2005.05.067

Google Scholar

[6] V. H. Babu, S. K. Manna, Sneha, K. K. Srinivasan and G. V. Bhatt, Synthesis and biological evaluation of 1, 3, 5-trisubstituted pyrazolines bearing benzofuran Ind. J. Het. Chem., 13 (2004) 253-256.

Google Scholar

[7] A. A. Siddiqui, Md. A. Rahman, Md. Shaharyar and R. Mishra, Synthesis and anticonvulsant activity of some substituted 3, 5-diphenyl-2-pyrazoline-1-carboxamide derivatives, Chem. Sci. J., 8 (2010) 1-10.

DOI: 10.4172/2150-3494.1000006

Google Scholar

[8] Y. R. Prasad, A. L. Rao, L. Prasoona, K. Murali and P. R. Kumar, Synthesis and antidepressant of some 1, 3, 4-triphenyl-2-pyrazolines and 3-(2"-hydroxy naphthalene-1"-yl)-1, 5-diphenyl-2-pyrazolines, Bioorg. Med. Chem. Lett., 15 (2005) 5030-5034.

DOI: 10.1016/j.bmcl.2005.08.040

Google Scholar

[9] V. H. Babu, C. H. Sridevi, A. Joseph and K. K. Srinivasan, Synthesis and biological evaluation of some novel pyrazolines, Ind. J. Pharm. Sci., 69, 3 (2007) 3470-473.

DOI: 10.4103/0250-474x.34569

Google Scholar

[10] S. A. Shinkar, V. J. Shetty and D. M. Jagdale, A review on synthetic approaches of pyrazolines derivatives, World J. Pharm. Pharm. Sci., 4, 11 (2015) 505-514.

Google Scholar

[11] M. D. Ankhiwala and M. V. Hathi, Synthesis and antibacterial activity of some 1-phenyl-3, 5-diaryl-2-pyrazolines, Ind. J. Het. Chem., 5, 3 (1996) 229-230.

DOI: 10.1002/chin.199538165

Google Scholar

[12] A. Tanitame, Y. Oyamada, K. Ofuji, M. Fujimoto, N. Iwai, Y. Hiyama, K. Suzuki, H. Ito, M. Wachi and Yamagishi, Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors, pyrazole derivatives, J. Med. Chem., 47, 14 (2004).

DOI: 10.1021/jm030394f

Google Scholar

[13] S. K. Sahu, M. Banerjee, A. Samantray, C. Behera and M. A. Azam, Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives, Trop. J. Pharm. Res., 7, 2 (2008) 961-968.

DOI: 10.4314/tjpr.v7i2.14664

Google Scholar

[14] S. Venkataraman, S. Jain, K. Shah and N. Upmanyu, Synthesis and biological activity of some novel pyrazolines, Acta Pol. Pharm., 67, 4 (2010) 361-366.

Google Scholar

[15] Y. S. Chovatia, S. P. Gandhi, P. L. Gorde and S. B. Bagade, Synthesis and antibacterial activity of some pyrazoline derivatives, Orient. J. Chem., 26, 1 (2010) 275-278.

Google Scholar

[16] S. Kini and A. M. Gandhi, Novel 2-pyrazoline derivatives as potential antibacterial and antifungal agents, Ind. J. Pharm. Sci., 70, 1 (2008) 105-108.

DOI: 10.4103/0250-474x.40344

Google Scholar

[17] U. Rastuti, Jumina and S. Matsjeh, Sintesis 6-nitro veratraldehid (3, 4-dimetoksi-6-nitro benzaldehida) dari vanilin dengan HNO3 dan campuran HNO3-H2SO4, Molekul, 4, 2 (2009) 62-72.

DOI: 10.20884/1.jm.2009.4.2.64

Google Scholar

[18] J. P. Singh, M. Dulawat, N. Jaitawat, S. S. Chundawat, A. Devpura and S. S. Dulawat, Microwave enhanced Claisen-Schmidt condensation: a green route to chalcones, Ind. J. Chem., 51B (2012) 1623-1627.

DOI: 10.1002/chin.201312132

Google Scholar

[19] M. J. Neethu and S. Yusuf, In-silico design, synthesis, anti-inflammatory and anticancer evaluation pf pyrazoline analogs of vanillin, Int. J. Pharm. Sci. Drug Res., 6, 2 (2014) 128-131.

Google Scholar

[20] K. J. Jarag, D. V. Pinjari, A. B. Pandit and G. S. Shankarling, Synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl)-prop-2-en-1-one): advantages of the sonochemical method over conventional method, Ultrason. Sonochem., 18 (2011).

DOI: 10.1016/j.ultsonch.2010.09.010

Google Scholar

[21] R. Gupta, N. Gupta and A. Jain, Improved synthesis of chalcones and pyrazolines under ultrasonic irradiation, Ind. J. Chem., 49B (2010) 351-355.

DOI: 10.1002/chin.201030126

Google Scholar

[22] M. A. Bakht, M. S. Yar, A. A. Siddiqui, M. M. Abdullah, H. Tarazi, M. M. Naffaa and A. M-Alafeefy, Molecular properties prediction, synthesis, and diuretic activity of phenoxy acetic acid bearing pyrazolines, Med. Chem. Res., 22 (2013) 916-962.

DOI: 10.1007/s00044-012-0086-y

Google Scholar

[23] M. D. Altintop, A. Ozdemir, G. T. Zitouni, S. Ilgin, O. Atli, R. Demirel and Z. A. Kaplancikli, A novel series of thiazolyl-pyrazoline derivatives: synthesis and evaluation of antifungal activity, cytotoxicity, and genotoxicity, Eur. J. Med. Chem., 92 (2015).

DOI: 10.1016/j.ejmech.2014.12.055

Google Scholar

[24] V. A. Chebanov, S. M. Desenko and T. W. Gursley, Azaheterocycles Based on α, β-Unsaturated Carbonyls, Springer, Berlin, (2008).

Google Scholar

[25] R. E. Trifonov, A. V. Gaenko, S. N. Vergizov, M. B. Shcherbinin and V. A. Ostrovskii, A theoretical and experimental study of dipole moments of 3-aminofurazans, Croat. Chem. Acta, 76, 2 (2003) 177-182.

Google Scholar

[26] W. W. Davis and T. R. Stout, Disc plate method of microbiological antibiotic assay, App. Microbiol., 22, 4 (1971) 659-665.

DOI: 10.1128/am.22.4.659-665.1971

Google Scholar

[27] K. S. Ju and R. E. Parales, Nitroaromatic compounds, from synthesis to biodegradation, Microbiol. Mol. Biol. Rev., 74, 2 (2010) 250-272.

DOI: 10.1128/mmbr.00006-10

Google Scholar

[28] J. G. Black, Microbiology: Principles and Applications, Third ed., Prentice Hall College Div, New Jersey, (1996).

Google Scholar