Enhanced Power Factor of Single Crystalline Lead Telluride Nanowire

Article Preview

Abstract:

We present the thermoelectric properties of individual PbTe (lead telluride) nanowire (NW) grown by a stress induced method. Temperature-dependent thermoelectric power and electrical conductivity in PbTe NW with diameter 125 nm were investigated in temperature ranging of 300−400 K. The PbTe NW was found to have a Seebeck coeficient S and electrical conductivity σ of −121 μV K−1 and 138 S cm−1 at 300 K, respectively. The calculated power factor (PF) of PbTe NW (d = 125 nm) demonstrate an enhancement, wich is higher than that have been previously reported in PbTe NWs. Such an enhanced thermoelectric performance can in part be attributed to the size effect of nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-54

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires, Mat. Sci. Eng. R 60 (2008) 1–51.

Google Scholar

[2] D. M. Rowe, CRC Handbook of Thermoelectrics, (CRC Press, Boca Raton, FL, USA) (1995).

Google Scholar

[3] Z.H. Dughaish, Lead telluride as a thermoelectric material for thermoelectric power generation, Phys. B 322 (2002) 205-223.

DOI: 10.1016/s0921-4526(02)01187-0

Google Scholar

[4] L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47 (1993) 12727.

DOI: 10.1103/physrevb.47.12727

Google Scholar

[5] S. Y. Jang, H. S. Kim, J. Park, M. Jung, J. Kim, S. H. Lee, J. W. Roh and W. Lee, Transport properties of single-crystalline n-type semiconducting PbTe nanowires, Nanotechnology 20 (2009) 415204.

DOI: 10.1088/0957-4484/20/41/415204

Google Scholar

[6] G. Tai, B. Zhou, and W. Guo, Structural Characterization and Thermoelectric Transport Properties of Uniform Single-Crystalline Lead Telluride Nanowires, J. Phys. Chem. C 112 (2008) 11314.

DOI: 10.1021/jp8041318

Google Scholar

[7] Y. Yang, D. K. Taggart, M. H. Cheng, J. C. Hemminger, and R. M. Penner, High-Throughput Measurement of the Seebeck Coefficient and the Electrical Conductivity of Lithographically Patterned Polycrystalline PbTe Nanowires, J. Phys. Chem. Lett. 1 (2010).

DOI: 10.1021/jz101128d

Google Scholar

[8] Dedi, P. C. Lee, C.H. Chien, G.P. Dong, W.C. Huang, C.L. Chen, C.M. Tseng, S. R. Harutyunyan, C.H. Lee, and Y.Y. Chen, Appl. Phys. Lett. 103, 2 (2013) p.023115.

DOI: 10.1063/1.4813606

Google Scholar

[9] Dedi, C.H. Chien, T.C. Hsiung, Y.C. Chen, Y.C. Huang, P.C. Lee, C.H. Lee, Y.Y. Chen, Structural, electronic transport and magnetoresistance of a 142nm lead telluride nanowire synthesized using stress-induced growth, AIP Advances 47 (2014) 057111.

DOI: 10.1063/1.4876919

Google Scholar

[10] S. H. Lee, W. Y. Shim, S. Y. Jang, J. W. Roh, P. Kim, J. Park, and W. Lee, Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method, Nanotechnology 22 (2011) 295707.

DOI: 10.1088/0957-4484/22/29/295707

Google Scholar

[11] Dedi, N. Idayanti, P.C. Lee, C.H. Lee, and Y.Y. Chen, Thermoelectric power of single crystalline lead telluride nanowire, J. Phys: Conference Series 776 (2016) 012046.

DOI: 10.1088/1742-6596/776/1/012046

Google Scholar