Effective Porosity Comparison with a Lime Mortar Matrix Base during 350 to 700 Days

Article Preview

Abstract:

This research is an investigation about the use of powder material additions with mortars lime base for a possible implementation in construction and/or restoration of historical sites. Mortars were elaborated in laboratory conditions with a 1:2.5 in weight proportion. One of the proofs to which these mortars were submitted was the test of capillary absorption; this way, the influence of the materials added to powder in these mortars determined porosity. Mortars were made with different percentages of materials. These powder materials are brick manufacturing ash, quarry powder, clay and maize starch. The test was run during 350 to 700 days. It obtained better results with 700 days than with 350 days.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-64

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Maravelaki-Kalaitzaki P, Bakolas A. Moropoulou physico-chemical study of Cretan ancient mortars. Cem Concr Res 2003; 33: 651–61.

DOI: 10.1016/s0008-8846(02)01030-x

Google Scholar

[2] G. Cultrone, E. Sebastián, M. Ortega Huertas. Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes. Cement and Concrete Research 35 (2005) 2278– 2289.

DOI: 10.1016/j.cemconres.2004.12.012

Google Scholar

[3] G. Margalha, R. Veiga, A.S. Silva, J. Brito, Traditional methods of mortar preparation: the hot lime mix method, Cem. Concr. Compos. 33 (2011) 796–804.

DOI: 10.1016/j.cemconcomp.2011.05.008

Google Scholar

[4] P. Maravelaki-Kalaitzaki, A. Bakolas, I. Karatasios, V. Kilikoglou, Hydraulic lime mortars for the restoration of historic masonry in Crete, Cem. Concr. Res. 35 (8) (2005) 1577–1586.

DOI: 10.1016/j.cemconres.2004.09.001

Google Scholar

[5] T. Cerulli, C. Pistolesi, C. Maltese, D. Salvioni, Durability of traditional plasters withrespect to blast furnace slag-based plaster, Cem. Concr. Res. 33 (2003) 1375–1383.

DOI: 10.1016/s0008-8846(03)00072-3

Google Scholar

[6] M. Lanzón-Torres, P.A. García-Ruiz, Lightweight puzzolanic materials used in mortars: evaluation of their influence on density, mechanical strength and water absorption, Cem. Concr. Compos. 31 (2009) 114–119.

DOI: 10.1016/j.cemconcomp.2008.11.003

Google Scholar

[7] M. Arandigoyen, J.L. Pérez-Bernal, M.A. Bello-López, J.I. Alvarez, Lime-pastes with different kneading water: Pore structure and capillary porosity, Appl. Surf. Sci. 252 (2005) 1449–1459.

DOI: 10.1016/j.apsusc.2005.02.145

Google Scholar

[8] P. Faria, F. Henriques, V. Rato, Comparative evaluation of lime mortars for architectural conservation, J. Cult. Herit. 9 (2008) 338–346.

DOI: 10.1016/j.culher.2008.03.003

Google Scholar

[9] J. Lanas, J.L. Perez Bernal, M.A. Bello, J.I. Alvarez, Mechanical properties of masonry repair dolomitic lime-based mortars, Cem. Concr. Res. 36 (5) (2006) 951–960.

DOI: 10.1016/j.cemconres.2005.10.004

Google Scholar

[10] M.P. Seabra, H. Paiva, J.A. Labrincha, V.M. Ferreira, Admixtures effect on fresh state properties of aerial lime based mortars, Constr. Build. Mater. 23 (2009) 1147–1153.

DOI: 10.1016/j.conbuildmat.2008.06.008

Google Scholar

[11] B. Johannesson, P. Utgenannt, Microstructural changes caused by carbonation of cement mortar, Cem. Concr. Res. 31 (2001) 925–931.

DOI: 10.1016/s0008-8846(01)00498-7

Google Scholar

[12] Robert M. Lawrence, Timothy J. Mays, Sean P. Rigby, Peter Walker, Dina D´ Ayala. Effects of carbonation on the pore structure of non-hydraulic lime mortars, Cement and Concrete Research 37 (2007) 1059–1069.

DOI: 10.1016/j.cemconres.2007.04.011

Google Scholar

[13] M. Arandigoyen, J.I. Alvarez, Carbonation process in lime pastes with different wáter/binder ratio. Construction materials, vol. 56, 281, 5-18. January- March 2006. ISSN 0465-2746.

DOI: 10.3989/mc.2006.v56.i281.88

Google Scholar

[14] S. Peroni, C. Tersigni, G. Porraca, S. Cerea, M. Forti, F. Guidobaldi, P. Rossi-Doria, A. De Rege, D. Picci, F.J. Pietrafitta, G. Benedetti, Lime based mortars for the repair of ancient masonry and possible substitutes, mortars, cements and grouts used in the conservation of historic buildings Symposium 3–6/11/1981, ICCROM, Rome, 1981, p.63.

Google Scholar

[15] Askeland, Donald., La Ciencia E Ingeniería De Los Materiales. Editorial Thomson-México. ISBN 13: 9789706863614. Año (2004).

Google Scholar

[16] Norma ASTM C109/109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens).

DOI: 10.1520/c0109_c0109m-20

Google Scholar

[17] Norma ASTM C348-02, Historical Standard: ASTM C348-02 Standard Test Method for Flexural Strength of Hydraulic-Cement Mortar.

Google Scholar

[18] Navarro Sánchez L. M., Martínez Molina W., Espinoza Mandujano A., Análisis de Materiales. Segunda edición, Facultad de Ingeniería Civil. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México. (2007).

DOI: 10.21041/conpat2019/v2pat88

Google Scholar

[19] ASTM C-230: Standard Specification for Flow Table for Use in Tests of Hydraulic Cement.

Google Scholar

[20] ASTM C-305: Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency.

DOI: 10.1520/c0305-13

Google Scholar

[21] Juan José Carpio y miembros de la Red DURAR., 1998, Manual de Inspección, Evaluación y Diagnostico de Corrosión En Estructuras de Hormigón Armado. Segunda Edición. Agosto, ISBN 980-296-541-3, pp.117-119.

DOI: 10.4995/thesis/10251/192263

Google Scholar

[21] Neville, A. M. and Brooks, J.J. (2010). Concrete Technology, second ed., Pearsson Education Limited, England, (2010).

Google Scholar