Non-Destructive Tests as Durability Indicators in Cement Mortars with Pozzolanic Substitutions

Article Preview

Abstract:

Cement industry is responsible of 5-7% of CO2 emissions to the atmosphere. This is preoccupant because this is one of the greenhouse effect gases which cause global warming. Pozzolanic material incorporation in cement mortars elaboration represents a good alternative to partially substitute cement, since its chemical composition could contribute to improvement of its durability and mechanical characteristics. In this research, mortars with pozzolanic substitutions are evaluated through non-destructive tests as: capillary absorption, electrical resistivity, and ultrasonic pulse velocity to the age of 1000 days. The results suggested that the incorporation of pozzolanic material as partial substitutes of Portland cement increases the mortars properties mainly in substitutions of CBC 20%, PN 10, and 30%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Federación Interamericana del Cemento, Informe estadístico. Bogotá, (2013).

Google Scholar

[2] P.K. Mehta, (1989). Pozzolanic and cementitious by products in concrete, Proceedings 3rd International Conference. 1 (1989), 1-43.

Google Scholar

[3] J. Newman, B.S. Choo, Advanced concrete technology , first ed., Elsevier, England, (2003).

Google Scholar

[4] CYTED, Red DURAR: Manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado, (1998).

DOI: 10.4995/thesis/10251/192263

Google Scholar

[5] C. Andrade, R.D. Andrea, La resistividad eléctrica como parámetro de control del hormigón y de su durabilidad, ALCONPAT. 2 (2011) 93-101.

DOI: 10.21041/ra.v1i2.8

Google Scholar

[6] ASTM C778-02, Standard specification for standard sand (2002).

Google Scholar

[7] ASTM C618-03, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (2003).

DOI: 10.1520/c0618-00

Google Scholar

[8] NMX-C-166-ONNCCE-2006, Contenido de agua por secado (2006).

Google Scholar

[9] NMX-C-165-ONNCCE-2004, Determinación de la masa específica y absorción de agua del agregado fino (2004).

Google Scholar

[10] NMX-C-073-ONNCCE-2004, Masa volumétrica (2004).

Google Scholar

[11] NMX-C-088-ONNCCE-1997, Determinación de impurezas orgánicas en el agregado fino (1997).

Google Scholar

[12] NMX-C-084-ONNCCE-2006, Partículas más finas que la criba 0. 075mm (No. 200) por medio de lavado (2006).

Google Scholar

[13] NMX-C-071-ONNCCE-2004, Determinación de terrones de arcilla y partículas deleznables (2004).

Google Scholar

[14] ASTM C128-04, Standard test method for density (specific gravity), and absorption of fine aggregate (2004).

Google Scholar

[15] NMX-C-077-ONNCCE-1997, Análisis para concreto (1997).

Google Scholar

[16] NMX-C-083-ONNCCE-2002, Determinación de la resistencia a la compresión de cilindros de concreto (2002).

Google Scholar

[17] NMX-C-148-2010, Gabinetes y cuartos húmedos y tanques de almacenamiento para el curado de especímenes de mortero y concreto de cementantes hidráulicos (2010).

Google Scholar

[18] ASTM C1585-04, Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes (2004).

Google Scholar

[19] ASTM G57-06, Standard test method for field measurement of soil resistivity using the wenner four-electrode method (2012).

DOI: 10.1520/g0057-06r12

Google Scholar

[20] ASTM C597-02, Standard test method for pulse velocity through concrete (2002).

Google Scholar

[21] Neville, A. M. and Brooks, J.J. (2010). Concrete Technology, second ed., Pearsson Education Limited, England, (2010).

Google Scholar