Preparation of Porous Polymer Membrane with Controllable Pore Size via Spray Spinning

Article Preview

Abstract:

Polymer membranes with fixed pore size or narrow pore size distribution can be used for special separation. However, polymer membranes prepared by conventional method usually have wide pore size distribution and the pore size is hard to control. Here we prepared a porous polymer membrane with uniform pore size via spraying a blend of polystyrene (PS) and polyethylene oxide (PEO) on a filtration paper. Dissolving the water-soluble component (PEO) forms the pore and varying the ratios of PEO in the blend controls the pore size. The pore size and size distribution are also affected by processing parameters, such as the flow rate of solution and carrier gas, and gap length. The morphologies of the membrane are observed using scanning electron microscopy (SEM). The novel polymer membrane with controllable and uniform pore size will be used for the separation of solutes with predictable sizes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Akolekar DB, Hind AR, Bhargava SKJ, Colloid Interface Sci 1998; 199: 92-98.

Google Scholar

[2] Lewandowski K, Murer P, Svec F, Frechet JMJ, Anal Chem 1998; 70: 1629-1638.

Google Scholar

[3] Hubbell JA, Langer R, Chem Eng News 1995; 73: 42-54.

Google Scholar

[4] Fain DE, MRS. Bull. 1994; 19: 40-43.

Google Scholar

[5] Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR, Science 1997; 278: 840-843.

DOI: 10.1126/science.278.5339.840

Google Scholar

[6] Furneaux RC, Rigby WR, Davidson AP, Nature 1989; 337: 147-149.

Google Scholar

[7] Guanhua L, Zhongyi J, Cheng C, Lipeng H, Boxin G, Hao Y, Hong W, Fusheng P, Peng Z, Xingzhong C, J M S, 2017: 537: 229-238.

Google Scholar

[8] Pearson DH, Tonucci RJ, Science 1995; 270: 68-70.

Google Scholar

[9] Milad AK, Mostafa M, Seyed HS, Mahdi FR, Mehdi K, Ramezan AT, Chemo, 2017; 168: 91-99.

Google Scholar

[10] Yoshida M, Asano M, Suwa T, Reber N, Spohr R, Katakai R, Adv Mater 1997; 9: 757-758.

DOI: 10.1002/adma.19970090917

Google Scholar

[11] Yeongmi J, Sanghyup L, Seungkwan H, Chanhyuk P, J M S, 2017; 536: 108-115.

Google Scholar

[12] Ruzette AL, Leibler L, Nat Mater 2005; 4: 19-31.

Google Scholar

[13] Abetz VP, Simon FW, Adv Polym Sci 2005; 189: 125-212.

Google Scholar

[14] Mao H, Arrechea PL, Bailey TS, Johnson BJS, Hillmyer MA, Faraday Discuss 2005; 128: 149-162.

Google Scholar

[15] Dipti K, Carbo Poly, 2017; 173: 338-343.

Google Scholar

[16] Bang J, Kim SH, Drockenmuller E, Misner MJ, Russell TP, Hawker CJ, J Am Chem Soc 2006; 128: 7622 -7629.

DOI: 10.1021/ja0608141

Google Scholar

[17] Y. Lukka Thuyavan, N. Anantharaman, G. Arthanareeswaran, A.F. Ismail, R.V. Mangalaraja, Desalination, 2015; 365: 355-364.

DOI: 10.1016/j.desal.2015.03.004

Google Scholar

[18] Heiner S, Lidietta G, Emma P and Enrico D, In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017, ISBN 9780124095472.

Google Scholar

[19] Mathias U, In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017, ISBN 9780124095472.

Google Scholar