[1]
M. HUNT. MMCs for exotic needs. Composite Material Science, 104 (1992) 53−62.
Google Scholar
[2]
F. Zhu, B.C. Li, J. Zhang et al. World Nonferrous Metals, 6 (2002) 9.
Google Scholar
[3]
X.N. Mao. Titanium Industry Progress, 2 (2000) 25.
Google Scholar
[4]
A. Shahan, A.K. Taheri. Adiabatic shear bands in titanium and titanium alloys: a critical review. Materials and Design, 14 (1993) 243-250.
DOI: 10.1016/0261-3069(93)90078-a
Google Scholar
[5]
C.W. Chen, X.Q. Liu, Y.Z. Chen, et al. Study on the Relationship between Adiabatic Shear Susceptivity and Critical Fracture Velocity for Ti-6Al-4V Alloy. Rare metal materials and engineering, 8 (2008) 1400-1402.
Google Scholar
[6]
K. Sun, X.W. Cheng, X.F. Zi, R. M Liu, F.C. Wang. Formation Mechanism of Adiabatic Shear Band of Ti-5Al-2. 5Sn Alloy. Rare metal materials and engineering, 12 (2010) 2173-2176.
Google Scholar
[7]
C. J. Zhang. High-temperature deformation behavior and microstructure and mechanical properties of (TiB+TiC)/Ti composites. Harbin Institute of Technology. (2013).
Google Scholar
[8]
S. Gorsse, Y. Le Petitcorps, S. Matar, F. Rebillat. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite, Materials Science and Engineering A. 340 (2003) 80-87.
DOI: 10.1016/s0921-5093(02)00188-0
Google Scholar
[9]
X. L. Guo. Effects of deformation degree on microstructure and mechanical properties of (TiB+La2O3)/Ti composites. Shanghai jiao tong university. (2013).
Google Scholar
[10]
S. H. Hu, D. T. Deng, X. B. Ren. Journal of Experimental Mechanics, 3 (1998) 9.
Google Scholar
[11]
S. H. Hu. SHPB experimental technology. Ordnance Material Science and Engineering. 11 (1991) 40-47.
Google Scholar
[12]
S. W. Seo, O. Min, H. Yang. Constitutive equation for Ti-6A1-4V at high temperatures measured using the SHPB technique. International Journal of Impact Engineering. 31 (2005) 735-754.
DOI: 10.1016/j.ijimpeng.2004.04.010
Google Scholar
[13]
X. N. Mu, H. M. Zhang, H. N. Cai, Q. B. Fan, Z. H. Zhang, Z. J. Fu, D. H. Yu. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites. Materials Science and Engineering A, 687 (2017).
DOI: 10.1016/j.msea.2017.01.072
Google Scholar