Damage Characteristics of Dynamically Induced Incipient Spall in Ultrapure Aluminum

Article Preview

Abstract:

A series of plate-impact experiments were performed to study the damage characteristics of incipient spall in ultrapure aluminum (99.999%). Surface profile measurement system based on the axial chromatic aberration was used to measure the cross section of “soft-recovered” samples and reconstruct the metallographic and 3D surface topography. Statistical analyses show that the size distribution, coalescence condition and connectivity factor of the voids are regularly affected by loading conditions. Based on this finding, the mechanisms that control the damage properties and evolution process of dynamic fracture are analyzed in detail. The results of this research offer an experimental quantitative microstructure description of the ductile fracture process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-136

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Iyer, V. Gavini, T.M. Pollock, Energetics and nucleation of point defects in aluminum under extreme tensile hydrostatic stresses, Phys. Rev. B 89 (2014) 014108.

DOI: 10.1103/physrevb.89.014108

Google Scholar

[2] R.A. Lebensohn, J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, C.A. Bronkhorst, J.F. Bingert, Modeling void growth in polycrystalline materials, Acta Mater. 61 (2013) 6918-6932.

DOI: 10.1016/j.actamat.2013.08.004

Google Scholar

[3] Y. Fan, A. Kushima, S. Yip, B. Yildiz, Mechanism of void nucleation and growth in bcc Fe: atomistic simulations at experimental time scales, Phys. Rev. Lett. 106 (2011) 125501.

DOI: 10.1103/physrevlett.106.125501

Google Scholar

[4] Q.Y. Chen, K.X. Liu, A void growth model considering the Bauschinger effect and its application to spall fracture, Chin. Phys. Lett. 28 (2011) 064602.

DOI: 10.1088/0256-307x/28/6/064602

Google Scholar

[5] J.L. Shao, P. Wang, A.M. He, R. Zhang, C.S. Qin, Spall strength of aluminium single crystals under high strain rates: molecular dynamics study, J. Appl. Phys. 114 (2013) 173501.

DOI: 10.1063/1.4828709

Google Scholar

[6] K. Baumung, H. Bluhm, G.I. Kanel, G. Muller, S.V. Razorenov, J. Singer, A.V. Utkin, Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures, Int. J. Impact Eng. 25 (2001) 631-639.

DOI: 10.1016/s0734-743x(01)00004-5

Google Scholar

[7] G.I. Kanel, K. Baumung, J. Singer, S.V. Razorenov, Dynamic strength of aluminum single crystals at melting, Appl. Phys. Lett. 76 (2000) 3230.

DOI: 10.1063/1.126590

Google Scholar

[8] X. Chen, J.R. Asay, S.K. Dwivedi, D.P. Field, Spall behavior of aluminum with varying microstructures, J. Appl. Phys. 99 (2006) 023528.

DOI: 10.1063/1.2165409

Google Scholar

[9] H. Peng, P. Li, X.Y. Pei, H.L. He, M.L. Qi, Measurement of dynamic damaged materials by white light axial chromatic aberration, Opt. Pre. Eng. 21 (2013) 20-26.

Google Scholar

[10] M.L. Qi, S. Zhong, D. Fan, C. Luo, H.L. He, Microscopic characteristics of damage evolution in ultrapure aluminum under tensile loading, Chin. Phys. Lett. 28 (2011) 016103.

DOI: 10.1088/0256-307x/28/1/016103

Google Scholar

[11] L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S.N. Luo, S. Greenfield, D. Byler, D. Paisley, K.J. McClellan, A. Koskelo, R. Dickerson, Statistics of weak grain boundaries for spall damage in polycrystalline copper, Scr. Mater. 63 (2010).

DOI: 10.1016/j.scriptamat.2010.08.003

Google Scholar

[12] P. Peralta, S. DiGiacomo, S. Hashemian, S.N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler, K.J. McClellan, H. D'Armas, Characterization of incipient spall damage in shocked copper multicrystals, Int. J. Damage Mech. 18 (2008) 393-413.

DOI: 10.1177/1056789508097550

Google Scholar

[13] J. Bontaz-Carion, Y. Pellegrini, X-ray microtomography analysis of dynamic damage in tantalum, Adv. Eng. Mater. 8 (2006) 480-486.

DOI: 10.1002/adem.200600058

Google Scholar

[14] L. Seaman, D.R. Curran, R.C. Crewdson, Transformation of observed crack traces on a section to true crack density for fracture calculations, J. Appl. Phys. 49 (1978) 5221-5229.

DOI: 10.1063/1.324419

Google Scholar

[15] D.R. Curran, L. Seaman, D.A. Shockey, Dynamic failure of solids, Phys. Rep. 147 (1987) 253-388.

Google Scholar

[16] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Tech. 99 (1977) 2-15.

DOI: 10.2172/7351470

Google Scholar

[17] J.N. Johnson, Ductile fracture and spallation in solids, J. Appl. Phys. 52 (1980) 2812-2825.

Google Scholar

[18] A.K. Zurek, W.R. Thissell, D.L. Tonks, R. Hixson, F. Addessio, Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum, J. Physique IV 07 (1997) C3-903-C3-908.

DOI: 10.1051/jp4:19973152

Google Scholar

[19] M.L. Qi, S. Zhong, H.L. He, D. Fan, L. Zhao, Effect of grain size and arrangement on dynamic damage evolution of ductile metal, Chin. Phys. B 22 (2013) 046203.

DOI: 10.1088/1674-1056/22/4/046203

Google Scholar

[20] H. Peng, P. Li, X.Y. Pei, H.L. He, H.P. Cheng, M.L. Qi, Experimental study of the spatial discontinuity of dynamic damage evolution, Acta Phys. Sin. 62 (2013) 226201.

Google Scholar

[21] A. Strachan, T. Çağın, W. Goddard, Critical behavior in spallation failure of metals. Phys. Rev. B 63 (2001) 060103.

DOI: 10.1103/physrevb.63.060103

Google Scholar