Effect of Post Weld Heat Treatment on Al 5052-SS 316 Explosive Cladding with Copper Interlayer

Article Preview

Abstract:

This study focuses on effect of post weld heat treatment (PWHT) on interfacial and mechanical properties of Al 5052-SS 316 explosive clad with copper interlayer at varied loading ratios and inclination angles. The use of interlayer is proposed for the control of additional kinetic energy dissipation and to alleviate the formation of intermetallic compounds at the interface. The Al-Steel clads are subjected to PWHT at varied temperatures (300°C-450°C) for 30 minutes and the results are presented. The microstructural characterization of as-clad and PWHT samples is observed by an optical microscope and Scanning Electron Microscope (SEM). Maximum hardness is obtained at the interface of the as-clad and PWHT samples. Increase in PWHT temperature enhances the tensile strength of the composite, whereas, the tensile strength decreases at 300°C due to the diffusion of Al and Cu elements and the formation of detrimental intermetallic compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mroz, G, Stradomski, H. Dyja, Using the explosive cladding method for production of Mg-Al-bimetallic bars, Arch Civ and Mech Engg. 15 (2) (2015) 317- 323.

DOI: 10.1016/j.acme.2014.12.003

Google Scholar

[2] S. Saravanan, K. Raghukandan, Diffusions kinetics in explosive cladding of dissimilar alloys as described through the Miedema Modal, Archives of Metallurgy and metals, 59 (4) (2014) 1615-1618.

DOI: 10.2478/amm-2014-0274

Google Scholar

[3] L. Tricarico, R. Spina, D. Sorgente, M. Brandizzi, Effect of heat treatments on mechanic properties of Fe/Al explosion-welded structural transition joints, Mater Des. 30 (2009) 2693-270.

DOI: 10.1016/j.matdes.2008.10.010

Google Scholar

[4] S. Saravanan, K. Raghukandan, Thermal kinetics in explosive cadding of dissimilar metals, Science and Technology of Welding and Joining, 17 (2) (2012) 99-103.

DOI: 10.1179/1362171811y.0000000080

Google Scholar

[5] R. Kacar, M. Acarer, An investigation on the explosive cladding of 316L stainless steel- P355GH steel, J Mater Process Technol. 152 (2004) 91-96.

DOI: 10.1016/j.jmatprotec.2004.03.012

Google Scholar

[6] M. Acarer, B. Demir, An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel, Mater Lett. 62 (25) (2008) 4158-4160.

DOI: 10.1016/j.matlet.2008.05.060

Google Scholar

[7] N. Kahraman, B. Gulenc, F. Findik, Corrosion and mechanical-micro structural aspects of dissimilar joints of Ti-Al-4V and Al plates, Int J Mater let. 34 (2007) 1432-1437.

DOI: 10.1016/j.ijimpeng.2006.08.003

Google Scholar

[8] P. Tamilchelvan, K. Raghukandan, S. Saravanan, Kinetic energy dissipation in Ti-SS explosive cladding with multi loading ratios, Iranian Journal of Science and Technology Transactions of Mechanical Engineering 38 (M1) (2014) 91-96.

Google Scholar

[9] S. Saravanan, K. Raghukandan, H. Hokamoto, Improved microstructure of dissimilar Cladding by means of interlayer technique, Arch civ Engg. 16 (2016) 563-568.

DOI: 10.1016/j.acme.2016.03.009

Google Scholar

[10] S.A. A Akbari Mousavi, A. A Dashti, A. Halvaee, Effect of Operational parameters and Heat treatments on the Aluminium-Steel Explosively composite plates, Adv. Mater Research, Vol. 264-265 (2011) 223-228.

DOI: 10.4028/www.scientific.net/amr.264-265.223

Google Scholar

[11] ASTM E 384-99, Standard Test for Micro indentation Hardness of Materials, ASTM International, (1999).

Google Scholar

[12] MIL-J-24445A, Joint, Bimetallic Bonded, Aluminum to Steel, Department of Defense Military Specification, (1977).

Google Scholar

[13] E. Elango, S. Saravanan, K. Raghukandan, Optimization of process parameters in Dissimilar explosive cladding through Taguchi method, J Manu Engg. 10 4 (2015) 194-199.

Google Scholar

[14] R. Kacar, M. Acarer, Microstructure-property relationship in explosively welded duplex stainless-steel. Mat Sci Engg. A 363: (2003) 290-296.

DOI: 10.1016/s0921-5093(03)00643-9

Google Scholar

[15] S. Saravanan, K. Raghukandan, Influence of interlayer in explosive cladding of dissimilar metals, Mat and Manu Processes 28 (5) (2013) 589-594.

DOI: 10.1080/10426914.2012.736665

Google Scholar

[16] S. A Akbari Mousavi, P. Farhadi Sartangi, Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel, Mater Des, 30 (2009) 459-468.

DOI: 10.1016/j.matdes.2008.06.016

Google Scholar

[17] M. Honarpisheh, M. Asmabadi, M. Sedigi, Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer, Materials and Design, 37 (2012) 122 – 127.

DOI: 10.1016/j.matdes.2011.12.045

Google Scholar

[18] Mohammad Hosein Bina, Farshid Dehghani, Mahmoud, Effect of heat treatment on bonding interface in explosive welded copper/stainless steel, Material and Design, 45 (2013) 504-509.

DOI: 10.1016/j.matdes.2012.09.037

Google Scholar