[1]
A.W. Weimer, G.A. Cochran, G.A. Eisman, et al, Rapid process for manufacturing aluminum nitride powder, J. Am. Ceram. Soc. 77 (1994) 3-18.
Google Scholar
[2]
R. Bachelard, P. Joubert, Aluminum nitride by carbothermal nitridation, Mat. Sci. Eng. A-Struct. 109 (1989) 247-251.
DOI: 10.1016/0921-5093(89)90595-9
Google Scholar
[3]
Y. Baik, K. Shanker, J.R. McDermind, et al, Carbothermal synthesis of aluminum nitride using sucrose, J. Am. Ceram. Soc. 77 (1994) 2165-2172.
DOI: 10.1111/j.1151-2916.1994.tb07113.x
Google Scholar
[4]
H. Scholz, P. Greil, Nitridation reactions of molten Al-(Mg, Si) alloys, J. Mater. Sci. 26 (1991) 669-677.
DOI: 10.1007/bf00588302
Google Scholar
[5]
H.D. Li, G.T. Zou, H. Wang, et al, Synthesis and infrared study of nanosized aluminum nitride powders prepared by direct current arc plasma, J. Phys. Chem. B 102 (1998) 8692-8695.
DOI: 10.1021/jp981486x
Google Scholar
[6]
M. Bockowski, B. Lucznik, I. Grzegory, et al, High-pressure direct synthesis of aluminium nitride, J. Phys. -Condens. Mat. 14 (2002) 11237-11242.
DOI: 10.1088/0953-8984/14/44/460
Google Scholar
[7]
G. Selvaduray, L. Sheet, Aluminum nitride: review of synthesis methods, Mater. Sci. Technol. 9 (1993) 463-473.
Google Scholar
[8]
Y.A. Kotov, Electric explosion of wires as a method for preparation of nanopowders, J. Nanopart. Res. 5 (2003) 539-550.
Google Scholar
[9]
C.S. Wong, B. Bora, S.L. Yap, et al, Effect of ambient gas species on the formation of Cu nanoparticles in wire explosion process, Curr. Appl. Phys. 12 (2012) 1345-1348.
DOI: 10.1016/j.cap.2012.03.024
Google Scholar
[10]
Q. Zhou, Q.G. Zhang, W.Y. Yan, et al, Effect of medium on deposited energy in microsecond electrical explosion of wires, IEEE Trans. Plasma Sci. 40 (2012) 2198-2204.
DOI: 10.1109/tps.2012.2205696
Google Scholar
[11]
S. Krishnan, A.S.M.A. Haseeb, M. R Johan, One dimensional cuo nanocrystals synthesis by electrical explosion: a study on structural, optical and electronic properties, J. Alloy. Compd. 586 (2014) 360-367.
DOI: 10.1016/j.jallcom.2013.10.014
Google Scholar
[12]
N. Wada, K. Akiyoshi, K. Morita, et al, Reaction synthesis of several titanium oxides through electrical wire explosion in air and in water, Ceram. Int. 39 (2013) 7927-7933.
DOI: 10.1016/j.ceramint.2013.03.056
Google Scholar
[13]
L.C. Liu, Q.G. Zhang, J.P. Zhao, et al, Study on characteristics of nanopowders synthesized by nanosecond electrical explosion of thin aluminum wire in the argon gas, IEEE Trans. Plasma Sci. 41 (2013) 2221-2226.
DOI: 10.1109/tps.2013.2240318
Google Scholar
[14]
M.N. Efimov, E.Y. Mironova, E.L. Dzidziguri, et al, Formation of nanoparticles of platinum group metal alloys in composites based on nanodiamonds, Russ. J. Phys. Chem A 88 (2014) 1739-1743.
DOI: 10.1134/s0036024414100112
Google Scholar
[15]
C. Cho, Y. Kinemuchi, H. Suematsu, et al, Enhancement of nitridation in synthesis of aluminum nitride nanosize powders by pulsed wire discharge, Jpn. J. Appl. Phys. 42 (2003) 1763-1765.
DOI: 10.1143/jjap.42.1763
Google Scholar
[16]
K. Hokamoto, N. Wada, R. Tomoshige, et al, Synthesis of TiN powders through electrical wire explosion in liquid nitrogen, J. Am. Ceram. Soc. 485 (2009) 573-576.
DOI: 10.1016/j.jallcom.2009.06.061
Google Scholar
[17]
F.H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures, J. Appl. Cryst. 7 (1974) 526-531.
DOI: 10.1107/s0021889874010387
Google Scholar
[18]
A.M. Yang, Y.H. Xiong, L. Liu, Effect of cooling rate on the morphology of γ' precipitates in a nickel-base superalloy under directional solidification, Sci. Technol. Adv. Mat. 2 (2001) 105-107.
DOI: 10.1016/s1468-6996(01)00034-1
Google Scholar
[19]
J.P. Zhao, Q.G. Zhang, Q. Zhou, Optical diagnosis of electrical explosion process of aluminum wire, High Power Laser Part. Beams 24 (2012) 544-548.
DOI: 10.3788/hplpb20122403.0544
Google Scholar
[20]
X.W. Li, Y.C. Chao, J. Wu, et al, Study of the shock waves characteristics generated by underwater electrical wire explosion, J. Appl. Sci. 118 (2015) 023301.
DOI: 10.1063/1.4926374
Google Scholar