Production of AlN Nanopowders by Electrical Wire Explosion in Liquid Nitrogen

Article Preview

Abstract:

AlN nanopowders are successfully synthesized via electrical Al wire explosion in liquid nitrogen. After pickling in 15 % HCl-ethanel, the purified AlN nanopowders are characterized by various techniques. It is observed that the synthesized AlN nanoparticles are hexagonal AlN (h-AlN) exhibiting various shapes, including sphere, spheroidicity, polygon and hexagon. The results show that the charging voltage affects on the AlN content and the morphology of samples, significantly. Further more, it is observed that synthesized AlN particles in the size of 100-300 nm are coated by an amorphous layer mostly resulted from the high cooling rate in liquid nitrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-51

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.W. Weimer, G.A. Cochran, G.A. Eisman, et al, Rapid process for manufacturing aluminum nitride powder, J. Am. Ceram. Soc. 77 (1994) 3-18.

Google Scholar

[2] R. Bachelard, P. Joubert, Aluminum nitride by carbothermal nitridation, Mat. Sci. Eng. A-Struct. 109 (1989) 247-251.

DOI: 10.1016/0921-5093(89)90595-9

Google Scholar

[3] Y. Baik, K. Shanker, J.R. McDermind, et al, Carbothermal synthesis of aluminum nitride using sucrose, J. Am. Ceram. Soc. 77 (1994) 2165-2172.

DOI: 10.1111/j.1151-2916.1994.tb07113.x

Google Scholar

[4] H. Scholz, P. Greil, Nitridation reactions of molten Al-(Mg, Si) alloys, J. Mater. Sci. 26 (1991) 669-677.

DOI: 10.1007/bf00588302

Google Scholar

[5] H.D. Li, G.T. Zou, H. Wang, et al, Synthesis and infrared study of nanosized aluminum nitride powders prepared by direct current arc plasma, J. Phys. Chem. B 102 (1998) 8692-8695.

DOI: 10.1021/jp981486x

Google Scholar

[6] M. Bockowski, B. Lucznik, I. Grzegory, et al, High-pressure direct synthesis of aluminium nitride, J. Phys. -Condens. Mat. 14 (2002) 11237-11242.

DOI: 10.1088/0953-8984/14/44/460

Google Scholar

[7] G. Selvaduray, L. Sheet, Aluminum nitride: review of synthesis methods, Mater. Sci. Technol. 9 (1993) 463-473.

Google Scholar

[8] Y.A. Kotov, Electric explosion of wires as a method for preparation of nanopowders, J. Nanopart. Res. 5 (2003) 539-550.

Google Scholar

[9] C.S. Wong, B. Bora, S.L. Yap, et al, Effect of ambient gas species on the formation of Cu nanoparticles in wire explosion process, Curr. Appl. Phys. 12 (2012) 1345-1348.

DOI: 10.1016/j.cap.2012.03.024

Google Scholar

[10] Q. Zhou, Q.G. Zhang, W.Y. Yan, et al, Effect of medium on deposited energy in microsecond electrical explosion of wires, IEEE Trans. Plasma Sci. 40 (2012) 2198-2204.

DOI: 10.1109/tps.2012.2205696

Google Scholar

[11] S. Krishnan, A.S.M.A. Haseeb, M. R Johan, One dimensional cuo nanocrystals synthesis by electrical explosion: a study on structural, optical and electronic properties, J. Alloy. Compd. 586 (2014) 360-367.

DOI: 10.1016/j.jallcom.2013.10.014

Google Scholar

[12] N. Wada, K. Akiyoshi, K. Morita, et al, Reaction synthesis of several titanium oxides through electrical wire explosion in air and in water, Ceram. Int. 39 (2013) 7927-7933.

DOI: 10.1016/j.ceramint.2013.03.056

Google Scholar

[13] L.C. Liu, Q.G. Zhang, J.P. Zhao, et al, Study on characteristics of nanopowders synthesized by nanosecond electrical explosion of thin aluminum wire in the argon gas, IEEE Trans. Plasma Sci. 41 (2013) 2221-2226.

DOI: 10.1109/tps.2013.2240318

Google Scholar

[14] M.N. Efimov, E.Y. Mironova, E.L. Dzidziguri, et al, Formation of nanoparticles of platinum group metal alloys in composites based on nanodiamonds, Russ. J. Phys. Chem A 88 (2014) 1739-1743.

DOI: 10.1134/s0036024414100112

Google Scholar

[15] C. Cho, Y. Kinemuchi, H. Suematsu, et al, Enhancement of nitridation in synthesis of aluminum nitride nanosize powders by pulsed wire discharge, Jpn. J. Appl. Phys. 42 (2003) 1763-1765.

DOI: 10.1143/jjap.42.1763

Google Scholar

[16] K. Hokamoto, N. Wada, R. Tomoshige, et al, Synthesis of TiN powders through electrical wire explosion in liquid nitrogen, J. Am. Ceram. Soc. 485 (2009) 573-576.

DOI: 10.1016/j.jallcom.2009.06.061

Google Scholar

[17] F.H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures, J. Appl. Cryst. 7 (1974) 526-531.

DOI: 10.1107/s0021889874010387

Google Scholar

[18] A.M. Yang, Y.H. Xiong, L. Liu, Effect of cooling rate on the morphology of γ' precipitates in a nickel-base superalloy under directional solidification, Sci. Technol. Adv. Mat. 2 (2001) 105-107.

DOI: 10.1016/s1468-6996(01)00034-1

Google Scholar

[19] J.P. Zhao, Q.G. Zhang, Q. Zhou, Optical diagnosis of electrical explosion process of aluminum wire, High Power Laser Part. Beams 24 (2012) 544-548.

DOI: 10.3788/hplpb20122403.0544

Google Scholar

[20] X.W. Li, Y.C. Chao, J. Wu, et al, Study of the shock waves characteristics generated by underwater electrical wire explosion, J. Appl. Sci. 118 (2015) 023301.

DOI: 10.1063/1.4926374

Google Scholar