[1]
R.T. Holt,W. Wallace, Impurities and trace element in Nickel-base superalloys, Int. Met. Rev. 21 (1976) 1-24.
Google Scholar
[2]
X.Y. Wei Q.B. Yang, Effect of Mn and Si on notch sensitivity of an Fe-Ni base superalloy, Acta. Metall. Sin. 20 (1984) A261-265.
Google Scholar
[3]
C.B. Alcock, V.P. Itkin M.K. Horrigan, Vapour pressure equations for the metallic elements: 298-2500K, Can. Metall. Q. 23 (1984) 309-313.
DOI: 10.1179/cmq.1984.23.3.309
Google Scholar
[4]
I. Langmuir, The vapor pressure of metallic tungsten, Phys. Rev. 2 (1913) 329-342.
Google Scholar
[5]
J.W. Edwards, H.L. Johnston W.E. Ditmars, Vapor pressures of inorganic substances. XI. Titanium between 1587 and 1764K, and copper between 1143 and 1292K, J. Am. Chem. Soc. 75 (1953) 2467-2470.
DOI: 10.1021/ja01106a055
Google Scholar
[6]
A.L. Marshall, R.W. Dornte F.J. Norton, The vapor pressure of copper and iron, J. Am. Chem. Soc. 59 (1937) 1161-1166.
DOI: 10.1021/ja01286a001
Google Scholar
[7]
B.F. Peters D.R. Wiles, A vapor pressure study of the alloys of manganese with copper, Can. J. Chem. 41 (1963) 2591-2599.
DOI: 10.1139/v63-379
Google Scholar
[8]
J.M. McCormack, J.R. Myers R.K. Saxer, Vapor pressure of liquid copper, J. Chem. Eng. Data. 10 (1965) 319-321.
DOI: 10.1021/je60027a004
Google Scholar
[9]
F.T. Ferguso, K.G. Gardner J.A. Nuth, Vapor pressure of palladium from 1473K to 1973K, J. Chem. Eng. Data. 51 (2006) 1509-1515.
Google Scholar
[10]
K. Lau, R. Lamoreaux,D. Hildenbrand, Vapor pressure determination of arsenic activity in a molten Cu-Fe-S matte, Metall. Mater. Trans. B 14 (1983) 253-258.
DOI: 10.1007/bf02661021
Google Scholar
[11]
S.P. Garg, Y.J. Bhatt C.V. Sundaram, Thermodynamic study of liquid Cu-Mg alloys by vapor-pressure measurements, Metall. Trans. 4 (1973) 283-289.
DOI: 10.1007/bf02649628
Google Scholar
[12]
Y.J. Bhatt S.P. Garg, Thermodynamic study of liquid Aluminum-Magnesium alloys by vapor-pressure measurements, Metall. Trans. B 7 (1976) 271-275.
DOI: 10.1007/bf02654926
Google Scholar
[13]
C.Z. Wang, Research Methods in Metallurgical Physical Chemistry, Metallurgugy Industry Press, Beijing, 1992, pp.254-255.
Google Scholar
[14]
J.P. Morris G.R. Zellars, Vapor pressure of liquid copper and activities in liquid Fe-Cu alloys, Trans. Am. Inst. Min. Metall. Eng. 206 (1956) 1086-1090.
DOI: 10.1007/bf03377824
Google Scholar
[15]
A. Tanaka, Determination of the activities in Mn-C and Mn-Si melts by the vapor-pressure measurements, T. Jpn. I. Met. 20 (1979) 516-522.
DOI: 10.2320/matertrans1960.20.516
Google Scholar
[16]
S.P. Zeng, Z.J. Li,Z.K. Zha, Vaporization kinetics of antimony trisulfide and antimony trioxide, Eng. Chem. Metall. 9 (1988)87-94.
Google Scholar
[17]
Z.H. Zhang, Y.Q. Su, D.Z. Chen, J.J. Guo H.Z. Fu, Dynamics model for evaporation loss calculation of alloying elements, Foundry. 58 (2009) 373-375.
Google Scholar
[18]
Y.J. Duan, Physical chemistry fundamentals of impurity elements removal by evaporation in uranium melt, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, (2014).
Google Scholar
[19]
O. Kubaschewshi C.B. Alcock, Metallurgical Thermochemistry, Metallurgugy Industry Press, Beijing, 1985, pp.168-169.
Google Scholar
[20]
J.V. Lepore J.R. Van Wazer, A discussion of the transpiration method for determining vapor pressure, U.S. Atomic Energy Commission. 7 (1948) 1188-1196.
Google Scholar
[21]
R. Pankajavalli, C. Mallika, O.M. Sreedharan, V.S. Raghunathan, P.A. Premkumar, K.S. Nagaraja, Thermal stability of organo-chromium or chromium organic complexes and vapor pressure measurements on tris(2, 4-pentanedionato)chromium(III) and hexacarbonyl chromium(0) by TG-based transpiration method, Chem. Eng. Sci. 57 (2002).
DOI: 10.1016/s0009-2509(02)00248-8
Google Scholar
[22]
G.W.C. Kaye, T.H. Laby, Tables of Physical and Chemical Constants, World Publishing Corp., Beijing, 1999, p.248.
Google Scholar