[1]
Kunlong GAO. Study on the emission characteristics of atmospheric pollutants exhausted from NSP cement plants[D]. Hefei University of Technology, (2015).
Google Scholar
[2]
Ling JIN, Chunlai JIANG, YANG Jintian. Economic Analysis of NOx Control Technologies for Cement Industry during The Twelfth Five-Year Planning[J]. Environment and sustainable development, 5 (2012) 19-23.
Google Scholar
[3]
Wang H, Nakata T. Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector[J]. Energy Policy, 37(1) (2009) 338-351.
DOI: 10.1016/j.enpol.2008.09.045
Google Scholar
[4]
Changming GAO. On the NOx emission reduction for domestic cement industry[J]. Senior Consultant of China Cement Association. 18(4) (2012) 5-7.
Google Scholar
[5]
GB4915-2013, Emission Standard of Air Pollutants for Cement Industry.
Google Scholar
[6]
Haifeng CUI, Junlin XIE, Fengxiang LI, Panpan DONG, Feng HE. Research and Application of SCR Flue Gas Denitrification Technology[J]. Bulletin of the Chinese Ceramic Society, 35(3) (2016) 805-809.
Google Scholar
[7]
Glick HS, Klein JJ, Squire W. Single - Pulse Shock Tube Studies of the Kinetics of the Reaction N2+O2 ↔2NO between 2000–3000°K[J]. J Chem Phys, 27 (1957) 850-857.
DOI: 10.1063/1.1743864
Google Scholar
[8]
Hailong LI, Ping XIAO, Tao WANG, et al. Recent progress on catalysts used for NO decomposition[J]. Scientia Sinica Chimica, 44(12) (2014) 1951-1965.
DOI: 10.1360/n032014-00049
Google Scholar
[9]
Fritz A , Pitchon V . The current state of research on automotive lean NOx catalysis [J]. Appl Catal B: Envir, 13 (1997) 1-25.
DOI: 10.1016/s0926-3373(96)00102-6
Google Scholar
[10]
Hamada H, Kintaichi Y, Sasaki M, Ito T. Silver-promoted cobal oxide catalysts for direct decomposition of nitrogen monoxide. Chem Lett. (1990) 1069-1070.
DOI: 10.1246/cl.1990.1069
Google Scholar
[11]
Winter E R S. The catalytic decomposition of nitric oxide by metallic oxides[J]. J. Catal, 22 (1971) 158-170.
Google Scholar
[12]
Haneda M, Kintaichi Y, Bion N, Hamada H. Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl Catal B, 46 (2003) 473-482.
DOI: 10.1016/s0926-3373(03)00287-x
Google Scholar
[13]
Teraoka Yasutake, Tomohiro Harada, Shuichi Kagawa. Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides[J].Journal of the Chemical Society, Faraday Transactions, 94(13) (1998) 1887-1891.
DOI: 10.1039/a800872h
Google Scholar
[14]
Bin Zhao, Rijie Wang, Xiaoxia Yang. Simultaneous catalytic removal of NOx and diesel soot particulates over La1–xCexNiO3 perovskite oxide catalysts[J].Catalysis Communications, 10(7) (2009) 1029-1033.
DOI: 10.1016/j.catcom.2008.10.024
Google Scholar
[15]
Yokoi Yasuharu, Hiroshi Uchida. Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO:Correlation between cluster model calculations and temperature-programmed desor ption experiments[J].Catalysis Today, 42(12) (1998).
DOI: 10.1016/s0920-5861(98)00087-x
Google Scholar
[16]
Iwamoto M, Yokoo S, Sakai K, Kagawa S. Catalytic decomposition of nitric oxide over copper (II)-exchanged, Y-type zeolites[J]. J Chem Soc, Faraday Trans, 77 (1981) 1629-1638.
DOI: 10.1039/f19817701629
Google Scholar
[17]
Parvulescu V I , Grange P , Delmon B . NO decomposition over physical mixtures of Cu-ZSM-5 with zeolites or oxides [J]. Applied Catalysis B, 33(3) (2001) 137-223.
DOI: 10.1016/s0926-3373(01)00182-5
Google Scholar
[18]
Yanping CHEN, Dang-guo CHENG, Fengqiu CHEN, etal. NO Decomposition and Selective Catalytic Reduction of NO over Cu-ZSM-5 Zeolite[J].Progress in chemistry. 26(2) (2014) 248-258.
Google Scholar