[1]
V.V. Malyshev, A.I. Gab, Resource-saving methods for recycling waste tungsten carbide-cobalt cermets and extraction of tungsten from tungsten concentrates, Theor Found Chem En+, 41 (2007) 436-441.
DOI: 10.1134/s0040579507040161
Google Scholar
[2]
J.X. Zeng, X.H. Sun, L.F. Zheng, Q.C. He, S. Li, Recovery of Tungsten (VI) from Aqueous Solutions by Complexation-ultrafiltration Process with the Help of Polyquaternium, Chinese J Chem Eng, 20 (2012) 831-836.
DOI: 10.1016/s1004-9541(12)60406-6
Google Scholar
[3]
M. Watanabe, C. Pornthep, S. Kuroda, J. Kawakita, J. Kitamura, K. Sato, Development of WC-Co coatings by warm spray deposition for resource savings of tungsten, J Jpn I Met, 71 (2007) 853-859.
DOI: 10.2320/jinstmet.71.853
Google Scholar
[4]
M. Xie, M.P. Zhang, W. Wei, Z.F. Jiang, Y.G. Xu, Angstrom-sized tungsten carbide promoted platinum electrocatalyst for effective oxygen reduction reaction and resource saving, Rsc Adv, 5 (2015) 96488-96494.
DOI: 10.1039/c5ra19202a
Google Scholar
[5]
K. Hirose, I. Aoki, Recycling Cemented Carbides without Pollution Sorting Charging Material for Zinc Process, First International Conference on Processing Materials for Properties, (1993) 845-848.
Google Scholar
[6]
J.H. Pee, G.H. Kim, H.Y. Lee, Y.J. Kim, Extraction Factor of Tungsten Sources from Tungsten Scraps by Zinc Decomposition Process, Arch Metall Mater, 60 (2015) 1311-1314.
DOI: 10.1515/amm-2015-0120
Google Scholar
[7]
M. Kumar, D.C. Sau, P. Nishant, M. Bhattacharya, Reduction of Ammonium Paratungstate Generated during Hydrometallurgical Processing of Tungsten-Copper Borings, Harnessing of Nonferrous Minerals, Metals and Wastes, 828 (2014) 123-+.
DOI: 10.4028/www.scientific.net/amr.828.123
Google Scholar
[8]
Y. Wang, C.S. Zhou, Hydrometallurgical process for recovery of cobalt from zinc plant residue, Hydrometallurgy, 63 (2002) 225-234.
DOI: 10.1016/s0304-386x(01)00213-4
Google Scholar
[9]
B. Pospiech, Hydrometallurgical Recovery of Cobalt(Ii) from Acidic Chloride Solutions by Transport through Polymer Inclusion Membranes, Physicochem Probl Mi, 49 (2013) 641-649.
Google Scholar
[10]
X.H. Ning, H. Asheim, H.F. Ren, S.Q. Jiao, H.M. Zhu, Preparation of Titanium Deposit in Chloride Melts, Metall Mater Trans B, 42 (2011) 1181-1187.
DOI: 10.1007/s11663-011-9559-5
Google Scholar
[11]
I. Park, T. Abiko, T.H. Okabe, Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR), J Phys Chem Solids, 66 (2005) 410-413.
DOI: 10.1016/j.jpcs.2004.06.052
Google Scholar
[12]
H. Nakajima, T. Nohira, R. Hagiwara, Electrodeposition of metallic tungsten in ZnCl2-NaCl-KCl-WCl4 melt at 250 degrees C, Electrochem Solid St, 8 (2005) C91-C94.
DOI: 10.1149/1.1921130
Google Scholar
[13]
M. Erdogan, I. Karakaya, Electrochemical Reduction of Tungsten Compounds to Produce Tungsten Powder, Metall Mater Trans B, 41 (2010) 798-804.
DOI: 10.1007/s11663-010-9374-4
Google Scholar
[14]
X. Wang, C.F. Liao, Preparation and characterization of tungsten powder through molten salt electrolysis in a CaWO4-CaCl2-NaCl system, Int J Refract Met H, 31 (2012) 205-209.
DOI: 10.1016/j.ijrmhm.2011.11.004
Google Scholar
[15]
M. Erdogan, I. Karakaya, On the Electrochemical Reduction Mechanism of CaWO4 to W Powder, Metall Mater Trans B, 43 (2012) 667-670.
DOI: 10.1007/s11663-012-9689-4
Google Scholar
[16]
M. Masuda, H. Takenishi, A. Katagiri, Electrodeposition of tungsten and related voltammetric study in a basic ZnCl2-NaCl (40-60 mol %) melt, J Electrochem Soc, 148 (2001) C59-C64.
DOI: 10.1149/1.1344541
Google Scholar
[17]
T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl, Electrochem Commun, 13 (2011) 1492-1495.
DOI: 10.1016/j.elecom.2011.10.005
Google Scholar
[18]
R. Abdulaziz, L.D. Brown, D. Inman, S. Simons, P.R. Shearing, D.J.L. Brett, Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl-KCl eutectic, Electrochem Commun, 41 (2014) 44-46.
DOI: 10.1016/j.elecom.2014.01.022
Google Scholar
[19]
K. Nitta, T. Nohira, R. Hagiwara, M. Majima, S. Inazawa, Electrodeposition of tungsten from ZnCl2-NaCl-KCl-KF-WO3 melt and investigation on tungsten species in the melt, Electrochim Acta, 55 (2010) 1278-1281.
DOI: 10.1016/j.electacta.2009.10.021
Google Scholar
[20]
K. Nitta, T. Nohira, R. Hagiwara, M. Majima, S. Inazawa, Characteristics of a tungsten film electrodeposited in a KF-B2O3-WO3 melt and preparation of W-Cu-W three-layered films for heat sink application, J Appl Electrochem, 40 (2010) 1443-1448.
DOI: 10.1007/s10800-010-0121-y
Google Scholar
[21]
X.Z. Cao, H.Y. Wang, X. Meng, C. Wang, H. Yang, X.X. Xue, High Temperature Electrochemical Synthesis of Tungsten Boride from Molten Salt, Emerging Focus on Advanced Materials, Pts 1 and 2, 306-307 (2011) 463-466.
DOI: 10.4028/www.scientific.net/amr.306-307.463
Google Scholar
[22]
L.L. Su, K. Liu, Y.L. Liu, L. Wang, L.Y. Yuan, L. Wang, Z.J. Li, X.L. Zhao, Z.F. Chai, W.Q. Shi, Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts, Electrochim Acta, 147 (2014) 87-95.
DOI: 10.1016/j.electacta.2014.09.095
Google Scholar
[23]
R.S. Yang, T.Y. Xing, R.B. Xu, M.T. Li, Molten salt synthesis of tungsten carbide powder using a mechanically activated powder, Int J Refract Met H, 29 (2011) 138-140.
DOI: 10.1016/j.ijrmhm.2010.09.008
Google Scholar
[24]
V. Malyshev, A. Gab, A.M. Popescu, V. Constantin, Electroreduction of tungsten oxide(VI) in molten salts with added metaphosphate, Chem Res Chinese U, 29 (2013) 771-775.
DOI: 10.1007/s40242-013-3003-0
Google Scholar
[25]
M.H. Kang, J.X. Song, H.M. Zhu, S.Q. Jiao, Electrochemical Behavior of Titanium(II) Ion in a Purified Calcium Chloride Melt, Metall Mater Trans B, 46 (2015) 162-168.
DOI: 10.1007/s11663-014-0191-z
Google Scholar
[26]
T.B. Joseph, N. Sanil, L. Shakila, K.S. Mohandas, K. Nagarajan, A cyclic voltammetry study of the electrochemical behavior of platinum in oxide-ion rich LiCl melts, Electrochim Acta, 139 (2014) 394-400.
DOI: 10.1016/j.electacta.2014.07.025
Google Scholar
[27]
Q.Y. Wang, J.X. Song, J.Y. Wu, S.Q. Jiao, J.G. Hou, H.M. Zhu, A new consumable anode material of titanium oxycarbonitride for the USTB titanium process, Phys Chem Chem Phys, 16 (2014) 8086-8091.
DOI: 10.1039/c4cp00185k
Google Scholar