Preparation of Tungsten Nanoparticles from Spent Tungsten Carbide by Molten Salt Electrolysis

Article Preview

Abstract:

Tungsten carbide was used as sacrificial anode in NaCl-KCl molten salt to form tungsten ion dissolution, with increasing anode potential of the charge transfer resistance decreases, tungsten ions in molten salt of average valence of +6, reduction of tungsten ion for the reversible behavior of diffusion control. Increasing the cathode distance and changing the cathode position can effectively avoid the pollution of the anode residual carbon to the tungsten powder of cathode products. The particle size of tungsten powder increases with the increase of cathode current density. When the cathode current density is 0.01Acm-2, anode potential 1.2V and anode cathode spacing 45mm, the particle size of tungsten powder is about 50nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

961-968

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Malyshev, A.I. Gab, Resource-saving methods for recycling waste tungsten carbide-cobalt cermets and extraction of tungsten from tungsten concentrates, Theor Found Chem En+, 41 (2007) 436-441.

DOI: 10.1134/s0040579507040161

Google Scholar

[2] J.X. Zeng, X.H. Sun, L.F. Zheng, Q.C. He, S. Li, Recovery of Tungsten (VI) from Aqueous Solutions by Complexation-ultrafiltration Process with the Help of Polyquaternium, Chinese J Chem Eng, 20 (2012) 831-836.

DOI: 10.1016/s1004-9541(12)60406-6

Google Scholar

[3] M. Watanabe, C. Pornthep, S. Kuroda, J. Kawakita, J. Kitamura, K. Sato, Development of WC-Co coatings by warm spray deposition for resource savings of tungsten, J Jpn I Met, 71 (2007) 853-859.

DOI: 10.2320/jinstmet.71.853

Google Scholar

[4] M. Xie, M.P. Zhang, W. Wei, Z.F. Jiang, Y.G. Xu, Angstrom-sized tungsten carbide promoted platinum electrocatalyst for effective oxygen reduction reaction and resource saving, Rsc Adv, 5 (2015) 96488-96494.

DOI: 10.1039/c5ra19202a

Google Scholar

[5] K. Hirose, I. Aoki, Recycling Cemented Carbides without Pollution Sorting Charging Material for Zinc Process, First International Conference on Processing Materials for Properties, (1993) 845-848.

Google Scholar

[6] J.H. Pee, G.H. Kim, H.Y. Lee, Y.J. Kim, Extraction Factor of Tungsten Sources from Tungsten Scraps by Zinc Decomposition Process, Arch Metall Mater, 60 (2015) 1311-1314.

DOI: 10.1515/amm-2015-0120

Google Scholar

[7] M. Kumar, D.C. Sau, P. Nishant, M. Bhattacharya, Reduction of Ammonium Paratungstate Generated during Hydrometallurgical Processing of Tungsten-Copper Borings, Harnessing of Nonferrous Minerals, Metals and Wastes, 828 (2014) 123-+.

DOI: 10.4028/www.scientific.net/amr.828.123

Google Scholar

[8] Y. Wang, C.S. Zhou, Hydrometallurgical process for recovery of cobalt from zinc plant residue, Hydrometallurgy, 63 (2002) 225-234.

DOI: 10.1016/s0304-386x(01)00213-4

Google Scholar

[9] B. Pospiech, Hydrometallurgical Recovery of Cobalt(Ii) from Acidic Chloride Solutions by Transport through Polymer Inclusion Membranes, Physicochem Probl Mi, 49 (2013) 641-649.

Google Scholar

[10] X.H. Ning, H. Asheim, H.F. Ren, S.Q. Jiao, H.M. Zhu, Preparation of Titanium Deposit in Chloride Melts, Metall Mater Trans B, 42 (2011) 1181-1187.

DOI: 10.1007/s11663-011-9559-5

Google Scholar

[11] I. Park, T. Abiko, T.H. Okabe, Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR), J Phys Chem Solids, 66 (2005) 410-413.

DOI: 10.1016/j.jpcs.2004.06.052

Google Scholar

[12] H. Nakajima, T. Nohira, R. Hagiwara, Electrodeposition of metallic tungsten in ZnCl2-NaCl-KCl-WCl4 melt at 250 degrees C, Electrochem Solid St, 8 (2005) C91-C94.

DOI: 10.1149/1.1921130

Google Scholar

[13] M. Erdogan, I. Karakaya, Electrochemical Reduction of Tungsten Compounds to Produce Tungsten Powder, Metall Mater Trans B, 41 (2010) 798-804.

DOI: 10.1007/s11663-010-9374-4

Google Scholar

[14] X. Wang, C.F. Liao, Preparation and characterization of tungsten powder through molten salt electrolysis in a CaWO4-CaCl2-NaCl system, Int J Refract Met H, 31 (2012) 205-209.

DOI: 10.1016/j.ijrmhm.2011.11.004

Google Scholar

[15] M. Erdogan, I. Karakaya, On the Electrochemical Reduction Mechanism of CaWO4 to W Powder, Metall Mater Trans B, 43 (2012) 667-670.

DOI: 10.1007/s11663-012-9689-4

Google Scholar

[16] M. Masuda, H. Takenishi, A. Katagiri, Electrodeposition of tungsten and related voltammetric study in a basic ZnCl2-NaCl (40-60 mol %) melt, J Electrochem Soc, 148 (2001) C59-C64.

DOI: 10.1149/1.1344541

Google Scholar

[17] T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl, Electrochem Commun, 13 (2011) 1492-1495.

DOI: 10.1016/j.elecom.2011.10.005

Google Scholar

[18] R. Abdulaziz, L.D. Brown, D. Inman, S. Simons, P.R. Shearing, D.J.L. Brett, Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl-KCl eutectic, Electrochem Commun, 41 (2014) 44-46.

DOI: 10.1016/j.elecom.2014.01.022

Google Scholar

[19] K. Nitta, T. Nohira, R. Hagiwara, M. Majima, S. Inazawa, Electrodeposition of tungsten from ZnCl2-NaCl-KCl-KF-WO3 melt and investigation on tungsten species in the melt, Electrochim Acta, 55 (2010) 1278-1281.

DOI: 10.1016/j.electacta.2009.10.021

Google Scholar

[20] K. Nitta, T. Nohira, R. Hagiwara, M. Majima, S. Inazawa, Characteristics of a tungsten film electrodeposited in a KF-B2O3-WO3 melt and preparation of W-Cu-W three-layered films for heat sink application, J Appl Electrochem, 40 (2010) 1443-1448.

DOI: 10.1007/s10800-010-0121-y

Google Scholar

[21] X.Z. Cao, H.Y. Wang, X. Meng, C. Wang, H. Yang, X.X. Xue, High Temperature Electrochemical Synthesis of Tungsten Boride from Molten Salt, Emerging Focus on Advanced Materials, Pts 1 and 2, 306-307 (2011) 463-466.

DOI: 10.4028/www.scientific.net/amr.306-307.463

Google Scholar

[22] L.L. Su, K. Liu, Y.L. Liu, L. Wang, L.Y. Yuan, L. Wang, Z.J. Li, X.L. Zhao, Z.F. Chai, W.Q. Shi, Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts, Electrochim Acta, 147 (2014) 87-95.

DOI: 10.1016/j.electacta.2014.09.095

Google Scholar

[23] R.S. Yang, T.Y. Xing, R.B. Xu, M.T. Li, Molten salt synthesis of tungsten carbide powder using a mechanically activated powder, Int J Refract Met H, 29 (2011) 138-140.

DOI: 10.1016/j.ijrmhm.2010.09.008

Google Scholar

[24] V. Malyshev, A. Gab, A.M. Popescu, V. Constantin, Electroreduction of tungsten oxide(VI) in molten salts with added metaphosphate, Chem Res Chinese U, 29 (2013) 771-775.

DOI: 10.1007/s40242-013-3003-0

Google Scholar

[25] M.H. Kang, J.X. Song, H.M. Zhu, S.Q. Jiao, Electrochemical Behavior of Titanium(II) Ion in a Purified Calcium Chloride Melt, Metall Mater Trans B, 46 (2015) 162-168.

DOI: 10.1007/s11663-014-0191-z

Google Scholar

[26] T.B. Joseph, N. Sanil, L. Shakila, K.S. Mohandas, K. Nagarajan, A cyclic voltammetry study of the electrochemical behavior of platinum in oxide-ion rich LiCl melts, Electrochim Acta, 139 (2014) 394-400.

DOI: 10.1016/j.electacta.2014.07.025

Google Scholar

[27] Q.Y. Wang, J.X. Song, J.Y. Wu, S.Q. Jiao, J.G. Hou, H.M. Zhu, A new consumable anode material of titanium oxycarbonitride for the USTB titanium process, Phys Chem Chem Phys, 16 (2014) 8086-8091.

DOI: 10.1039/c4cp00185k

Google Scholar