[1]
Niknejad A, Moeinifard M. Theoretical and experimental studies of the external inversion process in the circular metal tubes. Mater Des 2012; 40: 324–330.
DOI: 10.1016/j.matdes.2012.04.005
Google Scholar
[2]
Eyvazian A, K. Habibi M, Hamouda AM, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes. Mater Des; 54. Epub ahead of print 2014. DOI: 10. 1016/j. matdes. 2013. 09. 031.
DOI: 10.1016/j.matdes.2013.09.031
Google Scholar
[3]
Azimi MB, Asgari M. Energy absorption characteristics and a meta-model of miniature frusta under axial impact. Int J Crashworthiness 2016; 21: 222–230.
DOI: 10.1080/13588265.2016.1164445
Google Scholar
[4]
Rezvani MJ, Jahan A. Effect of initiator, design, and material on crashworthiness performance of thin-walled cylindrical tubes: A primary multi-criteria analysis in lightweight design. Thin-Walled Struct 2015; 96: 169–182.
DOI: 10.1016/j.tws.2015.07.026
Google Scholar
[5]
Baroutaji A, Gilchrist MD, Smyth D, et al. Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin-Walled Struct 2015; 86: 121–131.
DOI: 10.1016/j.tws.2014.08.018
Google Scholar
[6]
Sun G, Pang T, Zheng G, et al. On energy absorption of functionally graded tubes under transverse loading. Int J Mech Sci 2016; 115: 465–480.
DOI: 10.1016/j.ijmecsci.2016.06.021
Google Scholar
[7]
Tran TN, Ton TNT. Lateral crushing behaviour and theoretical prediction of thin-walled rectangular and square tubes. Compos Struct 2016; 154: 374–384.
DOI: 10.1016/j.compstruct.2016.07.068
Google Scholar
[8]
Guler MA, Cerit ME, Bayram B, et al. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. Int J Crashworthiness 2010; 15: 377–390.
DOI: 10.1080/13588260903488750
Google Scholar
[9]
Agrawal D, Rawat S, Upadhyay AK. Crashworthiness of Circular Tubes with Structurally Graded Corrugations. In: SAE Technical Paper. SAE International. Epub ahead of print 2016. DOI: 10. 4271/2016-28-0050.
DOI: 10.4271/2016-28-0050
Google Scholar
[10]
Tanlak N, Sonmez FO. Optimal shape design of thin-walled tubes under high-velocity axial impact loads. Thin-Walled Struct 2014; 84: 302–312.
DOI: 10.1016/j.tws.2014.07.003
Google Scholar
[11]
Niknejad A, Elahi SM, Elahi SA, et al. Theoretical and experimental study on the flattening deformation of the rectangular brazen and aluminum columns. Arch Civ Mech Eng 2013; 13: 449–464.
DOI: 10.1016/j.acme.2013.04.008
Google Scholar
[12]
Najibi A, Shojaeefard MH, Yeganeh M. Developing and Multi-Objective Optimization of a Combined Energy Absorber Structure Using Polynomial Neural Networks and Evolutionary Algorithms. Lat Am J Solids Struct; 13.
DOI: 10.1590/1679-78252797
Google Scholar
[13]
Usta F, Türkmen HS, Turkmen HS, et al. Numerical investigation of stepped concentric crash tubes subjected to axial impact: The effects of number of tubes. In: Recent Advances in Space Technologies (RAST), 2015 7th International Conference on. 2015, p.39.
DOI: 10.1109/rast.2015.7208312
Google Scholar
[14]
Tarlochan F, Samer F, Hamouda AMS, et al. Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Struct 2013; 71: 7–17.
DOI: 10.1016/j.tws.2013.04.003
Google Scholar
[15]
Olabi AG, Morris E, Hashmi MSJ. Metallic tube type energy absorbers: A synopsis. Thin-Walled Struct 2007; 45: 706–726.
DOI: 10.1016/j.tws.2007.05.003
Google Scholar
[16]
Alghamdi AA. Collapsible impact energy absorbers: an overview. Thin-Walled Struct 2001; 39: 189–213.
DOI: 10.1016/s0263-8231(00)00048-3
Google Scholar
[17]
Abramowicz W. Thin-walled structures as impact energy absorbers. Thin-Walled Struct 2003; 41: 91–107.
DOI: 10.1016/s0263-8231(02)00082-4
Google Scholar
[18]
Ismail A, Sahrom M. Lateral crushing energy absorption of cylindrical kenaf fiber reinforced composites Lateral Crushing Energy Absorption of Cylindrical Kenaf Fiber Reinforced Composites. Int J Appl Eng Res 2016; 10: 19277–19288.
DOI: 10.11113/jt.v78.5258
Google Scholar
[19]
Sebaey TA, Mahdi E. Crashworthiness of pre-impacted glass/epoxy composite tubes. Int J Impact Eng. Epub ahead of print 2014. DOI: 10. 1016/j. ijimpeng. 2015. 11. 007.
DOI: 10.1016/j.ijimpeng.2015.11.007
Google Scholar
[20]
Mahdi E, Sebaey TA. Crushing behavior of hybrid hexagonal/octagonal cellular composite system: Aramid/carbon hybrid composite. Mater Des 2014; 63: 6–13.
DOI: 10.1016/j.matdes.2014.06.001
Google Scholar
[21]
Arachchige B, Ghasemnejad H, Augousti AT. Theoretical approach to predict transverse impact response of variable-stiffness curved composite plates. Compos Part B Eng 2016; 89: 34–43.
DOI: 10.1016/j.compositesb.2015.11.036
Google Scholar
[22]
Tarlochan F, Ramesh S. Composite sandwich structures with nested inserts for energy absorption application. Compos Struct 2012; 94: 904–916.
DOI: 10.1016/j.compstruct.2011.10.010
Google Scholar
[23]
Hussein RD, Ruan D, Lu G, et al. Axial crushing behaviour of honeycomb-filled square carbon fibre reinforced plastic (CFRP) tubes. Compos Struct 2016; 140: 166–179.
DOI: 10.1016/j.compstruct.2015.12.064
Google Scholar
[24]
Galehdari SA, Khodarahmi H. Design and analysis of a graded honeycomb shock absorber for a helicopter seat during a crash condition Design and analysis of a graded honeycomb shock absorber for a helicopter seat during a crash condition. Int J Crashworthiness 2016; 21: 231–241.
DOI: 10.1080/13588265.2016.1165440
Google Scholar
[25]
Hussein RD, Ruan D, Yoon JW. An Experimental Study of Square Aluminium Tubes with Honeycomb Core Subjected to Quasi-Static Compressive Loads. Key Eng Mater 2014; 626: 91–96.
DOI: 10.4028/www.scientific.net/kem.626.91
Google Scholar
[26]
Mozafari H, Molatefi H, Crupi V, et al. In plane compressive response and crushing of foam filled aluminum honeycombs. J Compos Mater 2015; 49: 3215–3228.
DOI: 10.1177/0021998314561069
Google Scholar
[27]
Sun G, Jiang H, Fang J, et al. Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Mater Des 2016; 110: 705–719.
DOI: 10.1016/j.matdes.2016.08.032
Google Scholar
[28]
Mozafari H, Khatami S, Molatefi H. Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress-Numerical study. Mater Des 2015; 66: 400–411.
DOI: 10.1016/j.matdes.2014.07.037
Google Scholar
[29]
Mohsenizadeh S, Alipour R, Ahmad Z, et al. Influence of auxetic foam in quasi-static axial crushing. Int J Mater Res 2016; 32: 146. 111418.
DOI: 10.3139/146.111418
Google Scholar
[30]
Azimi MB, Asgari M. A new bi-tubular conical-circular structure for improving crushing behavior under axial and oblique impacts. Int J Mech Sci 2016; 105: 253–265.
DOI: 10.1016/j.ijmecsci.2015.11.012
Google Scholar
[31]
Pirmohammad S, Marzdashti SE. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads. Thin-Walled Struct 2016; 108: 291–304.
DOI: 10.1016/j.tws.2016.08.023
Google Scholar
[32]
Baroutaji A, Gilchrist MD, Olabi AG. Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading. Thin-Walled Struct 2016; 98: 337–350.
DOI: 10.1016/j.tws.2015.10.001
Google Scholar
[33]
Eyvazian A, Akbarzadeh I, Shakeri M. Experimental study of corrugated tubes under lateral loading. Proc Inst Mech Eng Part L J Mater Des Appl 2012; 226: 109–118.
DOI: 10.1177/1464420712437307
Google Scholar
[34]
Kılıçaslan C. Numerical crushing analysis of aluminum foam-filled corrugated single- and double-circular tubes subjected to axial impact loading. Thin-Walled Struct 2015; 96: 82–94.
DOI: 10.1016/j.tws.2015.08.009
Google Scholar
[35]
Wu S, Li G, Sun G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube. Thin-Walled Struct 2016; 105: 121–134.
DOI: 10.1016/j.tws.2016.03.029
Google Scholar