The Effect of Milling Time on the Size of Silica Particles from Silica Sand

Article Preview

Abstract:

We report a method to adjust the size of silica nanoparticles from silica sand. In this study, synthesized silica nanoparticles by sol gel process from silica sand were conducted, with previously was controlled the size of silica sand by mechanical milling. Silica sand was milled by High Energy Milling in order to reduce the size into powder form. Effect of milling time shown the content of sodium and silicon is increased in sodium silicate solution obtained from various times of silica sand milling (30, 60 and 90 minutes, respectively) which is reacted with sodium hydroxide 8 M. The result of silica nanoparticles from sol gel process of sodium silicate solution were characterized using atomic absorption spectroscopy, scanning electron microscopy and X-ray diffraction techniques. It was found that the size of silica nanoparticles could be tailored with the change of milling time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-166

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Nadrah, O. Planinsek ˇ and M. Gabersˇcek: J. Mater. Sci., Vol. 49 (2014), p.481–495.

Google Scholar

[2] K.W. Gallis, J.T. Araujo, K.J. Duff, J.G. Moore and C.C. Landry: Adv. Mater., Vol. 11 (1999), p.1452–1455.

Google Scholar

[3] U. Zulfiqar, M. Awais, S. Z. Hussain, I. Hussain, S. W. Husain, T. Subhani: Mat. Lett., Vol. 192 (2017), pp.56-59.

DOI: 10.1016/j.matlet.2017.01.070

Google Scholar

[4] H. Ly, G. Xl, X.Z.H. Sh, G. Xq, J. Wq and C. Zy: Appl. Surf. Sci., Vol. 252 (2006), 8724–8733.

Google Scholar

[5] D. R. Hristov, E. Mahon, K. A. Dawson: Chem. Commun., Vol. 51 (2015), 17420-17423.

Google Scholar

[6] U. Zulfiqar, T. Subhani, S. W. Husain. J Sol-Gel Sci Technol., Vol. 77 (2016), pp.753-758.

Google Scholar

[7] N. A. Rahman, I. Widhiana, S. R. Juliastuti, H. Setyawan: Colloid. Surf. A., Vol. 476 (2015), pp.1-7.

Google Scholar

[8] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan: J. Exp. Nanoscience., Vo. 9 (2014), pp.272-281.

Google Scholar

[9] S. Sankar, S. K. Sharma, N. Kaur, B. Lee, D. Y. Kim, S. Lee, H. Jung: Ceramics Int., Vol. 42, (2016), pp.4875-4885.

Google Scholar

[10] U. Zulfiqar, T. Subhani, S. W. Husain. Journal of Asian Ceramic Societies, 4(2016), p.91–96.

Google Scholar

[11] Darminto and Munasir, Conference Proceeding (2013) pp.117-122.

Google Scholar

[12] S. Affandi, H. Setyawan, S. Winardi, A. Purwanto and R. Balgis, Advanced Powder Technology 20 (2009), pp.468-472.

DOI: 10.1016/j.apt.2009.03.008

Google Scholar

[13] N. Thuadaij and A. Nuntiya, Chiang Mai J. Sci 35(1) (2008), pp.206-211.

Google Scholar

[14] Munasir, A. M. Hidayatullah, Triwikantoro, M. Zainuri and Darminto, SNF Procceding (2010), pp. FM101: 1-6.

Google Scholar

[15] A. Wahyudi, T Nurasid, and S. Rochani, Proceeding of International Conference on Chemical and Material Engineering (2012), pp. MSD. 06. 1-7.

Google Scholar

[16] M Salavati-Niasari, J Javidi, M Dadkhah. Comb Chem High Throughput Screen 16(6) (2013), p.458–462.

Google Scholar

[17] N. Standish, H. K. Worner, D. Y. Obuchowski. Powder Metallurgy, 66 (1990), pp.225-230.

Google Scholar

[18] S. Music, ´N. Filipovic-Vincekovi ´c´ and L. Sekovanic, ´ Braz. J. Chem. Eng., 28 (2011), p.89–94.

Google Scholar