Enhanced Adsorption Properties of Ag-Loaded β-Zeolite towards Toluene

Article Preview

Abstract:

Two series of Ag-loaded β-zeolites with silica/alumina ratio of 25 and 36 were prepared by ion exchange technique. The silver loading was varied in a range of 2-10 wt%. The samples were characterized by low-temperature nitrogen adsorption, Infrared and UV-vis spectroscopy, and transmission electron microscopy. Adsorption/desorption properties of zeolites were examined using a specially designed setup. Toluene was used as a model hydrocarbon. It was found that adsorption capacity of zeolites grows up along with silver content increase till 8%, and reduces then. According to data of physicochemical methods, at low loading the silver exists in cluster and ionic forms, while at high loading agglomerated particles predominate, which worsens the adsorption properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-184

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. -H. Park, S.J. Park, I. -S. Nam, G.K. Yeo, J.K. Kil, Y.K. Youn: Micropor. Mesopor. Mat. Vol. 101 (2007), p.264.

Google Scholar

[2] T. Kanazawa: Catal. Today Vol. 96 (2004), p.171.

Google Scholar

[3] A. Westermann, B. Azambre, G. Finqueneisel, P. Da Costa, F. Can: Appl. Catal. B-Environ. Vol. 158–159 (2014), p.48.

Google Scholar

[4] C.S. Sampara, E.J. Bissett, D. Assanis: Chem. Eng. Sci. Vol. 63 (2008), p.5179.

Google Scholar

[5] M. Shelef, R.W. McCabe: Catal. Today Vol. 62 (2000), p.35.

Google Scholar

[6] B. Azambre, A. Westermann, G. Finqueneisel, F. Can, J.D. Comparot: J. Phys. Chem. C Vol. 119 (2015), p.315.

Google Scholar

[7] D. Ball, C. Negohosian, D. Ross, D. Moser, R. McClaughry: SAE Int. J. Engines Vol. 6 (2013), (1922).

DOI: 10.4271/2013-01-2593

Google Scholar

[8] J. Nunan, J. Lupescu, G. Denison, D. Ball, D. Moser: SAE Int. J. Fuels Lubr. Vol. 6 (2013), p.430.

DOI: 10.4271/2013-01-1297

Google Scholar

[9] H. Chang, H. Chen, K. Koo, J. Rieck, P. Blakeman: SAE Int. J. Fuels Lubr. Vol. 7 (2014), p.480.

Google Scholar

[10] T. Johnson: SAE Int. J. Engines Vol. 8 (2015), p.1152.

Google Scholar

[11] E.V. Starokon, A.A. Vedyagin, L.V. Pirutko, I.V. Mishakov: J. Porous. Mat. Vol. 22 (2015), p.521.

Google Scholar

[12] J. Luo, R.W. McCabe, M.A. Dearth, R.J. Gorte: AIChE J. Vol. 60 (2014), p.2875.

Google Scholar

[13] A.V. Ivanov, G.W. Graham, M. Shelef: Appl. Catal. B-Environ. Vol. 21 (1999), p.243.

Google Scholar

[14] N.R. Burke, D.L. Trimm, R.F. Howe: Appl. Catal. B-Environ. Vol. 46 (2003), 97.

Google Scholar

[15] X. Liu, J.K. Lampert, D.A. Arendarskii, R.J. Farrauto: Appl. Catal. B-Environ. Vol. 35 (2001), p.125.

Google Scholar

[16] H. Yang, J. Deng, Y. Liu, S. Xie, Z. Wu, H. Dai: J. Mol. Catal. A-Gen. Vol. 414 (2016), p.9.

Google Scholar

[17] S.G. Fiddy, N.E. Bogdanchikova, V.P. Petranovskii, J.S. Ogden, M. Avalos-Borja: Stud. Surf. Sci. Catal. Vol. 142 (2002), p. (1939).

Google Scholar

[18] C. Zhao, J. Du, D. Huang, Y. Li, J. Chen, W. Li: J. Alloy Compd. Vol. 671 (2016), p.419.

Google Scholar

[19] V.L. Temerev, A.A. Vedyagin, T.N. Afonasenko, K.N. Iost, Y.S. Kotolevich, V.P. Baltakhinov, P.G. Tsyrulnikov: Reac. Kinet. Mech. Catal. Vol. 119 (2016), p.629.

DOI: 10.1007/s11144-016-1060-3

Google Scholar