[1]
V.R. Sanal Kumar, Thermoviscoelastic Characterization of a Composite Solid Propellant Using Tubular Test, AIAA Journal of Propulsion and Power, Vol.19, 3, May–June 2003, pp.397-404.
DOI: 10.2514/2.6143
Google Scholar
[2]
P.A. Kelly, Solid Mechanics Part I: An Introduction to Solid Mechanics, A Creative Commons Attributions, Mountain View, CA 94042, U.S.A, May (2015).
Google Scholar
[3]
David Roylance, Engineering Viscoelasticity, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, October, (2001).
Google Scholar
[4]
W.N. Findly, J.S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity,, North-Holland Series in Applied Mathematics and Mechanics, Vol. 18, Amsterdam, New York, (1976).
DOI: 10.1002/zamm.19780581113
Google Scholar
[5]
W. F1ügge, Viscoelasticity,, Blaisdell Publishing Co. , Massachusetts, (1975).
Google Scholar
[6]
Chu, Hung-Ta, and Chou, Jung-Hua Poisson ratio effect on stress behavior of propellant grains under ignition loading,, AIAA Journal of Propulsion and Power Volume (27)(3), 2011, p.662.
DOI: 10.2514/1.50249
Google Scholar
[7]
Tzikang Chen, "Determining a prony series for a viscoelastic material from time strain data, NASA / TM-2000-210123, ARL-TR-2206, May (2000).
Google Scholar
[8]
K. Krishna Raj, K,Sabarinath, G.Sandeep, M. Karuppasamy Pandian, K. Sathya Prabhakar, and V.R. Sanal Kumar, "Influence of Viscoelastic properties of Solid Propellants on Starting Transient of Solid Rocket Motors, 5th EUCASS, (2013).
Google Scholar
[9]
V.R. Sanal Kumar, Praveen Kumar S Pandiyan, Mohan Raj Murugesan, Ponnaiyan Ramasamy, V. Saravana Kumar, Numerical Studies on Viscoelastic Characterization of Solid Propellant Grain, 15th Asia Pacific Vibration Conference, 2-6 June, 2013, ICC Jeju, Korea.
Google Scholar
[10]
Ho, S.-Y., High Strain-Rate Constitutive Models for Solid Rocket Propellants,, AIAA Journal of Propulsion and Power, Volume (18)(5), 2002, p.1106–1111.
DOI: 10.2514/2.6041
Google Scholar
[11]
J.S.Y. Lai, and J.E. Fitzgerald, Thermorheological Properties of Asphalt Mixture,, Highway Research Record No. 313, Univ. of Utah, Salt Lake City, Utah, 1970, p.18, 19.
Google Scholar
[12]
J.J. Aklonis, W.J. MacKnight, and M. Shen, Introduction to Polymer Viscoelasticity, Wiley-Interscience, New York, (1972).
Google Scholar
[13]
R.M. Christensen, Theory of Viscoelasticity, 2nd ed., Academic Press, New York, (1982).
Google Scholar
[14]
J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley & Sons, New York, (1980).
Google Scholar
[15]
N.G. McCrum, B.E. Read, and G.Williams, Anelastic and Dielectric in Polymeric Solids, Wiley & Sons, London, 1967. Available from Dover Publications, New York.
Google Scholar
[16]
N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Heidelberg, (1989).
Google Scholar
[17]
N.W. Tschoegl, Time Dependence in Materials Properties: An Overview,, Mechanics of Time-Dependent Materials, Vol. 1, p.3–31, (1997).
Google Scholar
[18]
M.L. Williams, Structural Analysis of Viscoelastic Materials,, AIAA Journal, p.785, (1964).
Google Scholar
[19]
A. Nava, E. Mazza, M. Furrer, P. Villiger, W.H. Reinhart, In vivo mechanical characterization of human liver, Med. Image Anal. 12, 203-216, (2008).
DOI: 10.1016/j.media.2007.10.001
Google Scholar
[20]
P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram, B. Hamm, I. Sack, Assessment of liver viscoelasticity using multifrequency MR elastography, Magn, Reson, Med. 60, (2008).
DOI: 10.1002/mrm.21636
Google Scholar
[21]
A.R. Kemper, A.C. Santago, J.d. Stitzel, J.L. Sparks, S.M. Duma, Biomechanical response of human liver in tensile loading, Assoc. Adv. Automot, Med, 54, 15-26, (2010).
DOI: 10.1016/j.jbiomech.2011.10.022
Google Scholar
[22]
Abdulaziz S. Alghamdi, Ian A. Ashcroft, and Mo Song, Creep Resistance of Novel Polyethylene/Carbon Black Nanocomposites,, International Journal of Materials Science and Engineering, Vol. 2, No. 1, pp.1-5, June 2014.
DOI: 10.12720/ijmse.2.1.1-5
Google Scholar
[23]
Scott C. Grindya and Niels Holten-Andersen, Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light,, Soft matter, Issue 22, (2017).
DOI: 10.1039/c7sm00617a
Google Scholar
[24]
Sergiu Spinu and Delia Cerlinca, Modelling of Rough Contact between Linear Viscoelastic Materials,, Modelling and Simulation in Engineering, Volume 2017 (2017), Article ID 2521903, https://doi.org/10.1155/2017/2521903.
DOI: 10.1155/2017/2521903
Google Scholar
[25]
S. De, J. A. M. Kuipers, E. A. J. F. Peters, and J. T. Padding, Viscoelastic flow simulations in model porous media,, Phys. Rev. Fluids 2, 053303, 15 May (2017).
DOI: 10.1103/physrevfluids.2.053303
Google Scholar