[1]
Maňková, I. Progresívné technologie, Vienala Košice, ISBN 80-7099-430-4. (2000).
Google Scholar
[2]
R. Radovanovič, Mathematical Model for Severance Energy by CO2 Laser Cutting of Mild Steel. Strojírenská technologie, IX, p.3, (2004) ISSN 1211-4162.
Google Scholar
[3]
V. Pata, L. Sýkorová, O. Šuba, M. Malachová, Simulation of the transient temperature field when laser machining polymeric materials, Key engineering materials. 2016, (686), 246 - 251. ISSN -13: 978-3-03835-625-7.
DOI: 10.4028/www.scientific.net/kem.686.246
Google Scholar
[4]
O. Bílek., I. Lukovics, Determination of the Residual Stress through the Thickness of Plastics and Metallic. Manufacturing Technology, vol VI, pp.12-16, ISSN 1213248-9.
Google Scholar
[5]
Jurko, J. Influence of laser cutting speed to the surface quality. Functional surfaces, GC TECH Trencin, pp.68-71, (2002). ISBN 808891471.
Google Scholar
[6]
Libuše Sýkorová, Vladimir Pata, Milena Kubišová, Jana Knedlová: Effect of concentrated energy of laser beam on polymer material. MATEC Web Conf. 121 (2017) 03021. DOI: https: /doi. org/10. 1051/matecconf/201712103021.
DOI: 10.1051/matecconf/201712103021
Google Scholar
[7]
C. Felho, J. Kundrák, Characterization of Topography of Cut Surface Based on Theoretical Roughness. Key Eng. Mat. 581 (2014).
Google Scholar
[8]
Sýkorová. L., Pata. V., Kubišová. M., Malachova. M.: (2016). The laser machinability, of polymeric materials doi: 10. 4028/www. scientific. net/MSF. 862. 141.
DOI: 10.4028/www.scientific.net/msf.862.141
Google Scholar
[9]
Pata. V., Sýkorová. L., Kubišová. M., Malachova. M.: (2016). Resolving problems of finding surface boundaries during laser machining doi: 10. 4028/ www. scientific. net/MSF. 862. 66.
DOI: 10.4028/www.scientific.net/msf.862.66
Google Scholar