The Solution Design of Hobbing Worm Milling Cutters Face Teeth Undercut

Article Preview

Abstract:

Face teeth grinding of special tools, as hobing worm milling cutters are, is the shape and cinematically complex operation with the respect to achieving the necessary accuracy and resultant shape geometry. The grinding wheel shape, it ́s size and the control helix angle of hobing worm are the primary factors which are compelling the ground groove accuracy during the face teeth sharpening process. Inappropriately selected combination of these parameters causes undercut of this surface and the negative impact on required accuracy. The main aim of the solution is to find a variable and to create a parametric mathematical model to calculate appropriate grinding wheel shape according to the input factors – hobing worm and grinding wheel parameters which affects this issue. This system will be used to create the initial grinding wheel surface and a helix groove undercut calculation program. The graphical part of this programme will be the next benefit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-67

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Karpuschewski, B., Jandecka, K., Mourek, D., Automatic search for wheel position in flute grinding of cutting tools. CIRP Annals – Manufacturing technology. Elsevier. Netherlands. 2011, 60, 347-350.

DOI: 10.1016/j.cirp.2011.03.113

Google Scholar

[2] Saša ĆUKOVIĆ, Goran DEVEDŽIĆ, Ionuţ GHIONEA, Automatic determination of grinding tool profile for helical surfaces machining using catia VB interface, U.P.B. Sci. Bull., Series D, Vol. 72, Iss. 2, (2010).

Google Scholar

[3] GUANG, F., FENGWEI, H., DONGMING, G., RENKE, K., ZHUJI J., Ultra-precision grinding of asymmetric curved surfaces by line contact with cup wheel, 2013, Proceedings of the institution of mechanical engineers part c-journal of mechanical engineering science, Sage publications ltd, 227s, pages 111-119, ISSN: 0954-4062.

DOI: 10.1177/0954406212444516

Google Scholar

[4] SILAI, X., LIMING, W., ZEZHONG., C., CH., SEQUAN, W., AIMING T., A New and Accurate Mathematical Model for Computer Numerically Controlled Programming of 4Y1 Wheels in 21/2-Axis Flute Grinding of Cylindrical End-Mills, 2013, Journal of manufacturing science and engineering-transactions of the ASME, 135s, ISSN: 1087-1357.

DOI: 10.1115/1.4023379

Google Scholar

[5] MOFIZUL, MD., I., HOCHAN, K., TAEJO, K., Geometry Modeling of Screwed Wheel Dressed by Rounded Tool, 2015, Journal of the Chinese society of mechanical engineers, s 283-290, ISSN: 0257-9731.

Google Scholar

[6] YUANSHENG, Z., JINYUAN, T., HENG, Z., FENG, Y., Multistep Method for Grinding Face-Gear by Worm, 2016, journal of manufacturing science and engineering-transactions of the ASME, ISSN: 1087-1357 References to a book.

DOI: 10.1115/1.4033387

Google Scholar

[7] Milsimerová, A. (2014). Návrh řešení orovnávání tvarové plochy brusného kotouče pro ostřičku SHÜTTE,, ZČU v Plzni, FST, Plzeň.

Google Scholar

[8] Linkeová, I., NURBS křivky: NeUniformní Racionální B-Spline křivky, Nakladatelství ČVUT 2007, ISBN 978-80-01-03893-2.

Google Scholar

[9] Ježek, F., Míková M., Tomiczková S., Geometry for FST. Plzeň: University of West Bohemia, (2009).

Google Scholar

[10] Dieter R. Ziethen, Catia V5 Makroprogrammierung mit Visual Basic Script, Hanser, Germany, ISBN 978-3-446-42494-4.

DOI: 10.3139/9783446428065.fm

Google Scholar

[11] VB Scripting for Catia V5, Nick Weisenberger, expanded ebook edition.

Google Scholar

[12] Roud, P. (2013). Metody zefektivnění konstrukce řezných nástrojů, ZČU v Plzni, FST, Plzeň.

Google Scholar