On the Effect of the Cutting Speed of a Water Jet Abrasive Cutting Process on the Surface Morphology of the Low Carbon Steel S235

Article Preview

Abstract:

In order to increase the cutting and breaking capacity of abrasive water jet machining (AWJM), abrasive particles are usually added to water. The AWJM technology is generally used for harder and heavier machinable materials like thick sheets, composite materials with metal and ceramic properties and others within these categories to just cite a few. The contribution is mainly focused on the analysis of the surface properties of the steel S235 after the cutting process, and this depending on the cutting speed of the water jet. Three different cutting speeds were used for the analysis because this cutting parameter significantly affects the resulting quality of the machined surface. A contact profile method was used to analyze surface roughness. The observed surface roughness parameters were the Ra, Rt and Rz respectively. The above-mentioned surface roughness parameters were measured in three positions, i.e.: at the inlet, middle and exit positions of the water jet with respect to the machined material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-100

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Velíšek, P. Košťál, F. Pecháček, Stroje a zariadenia pre špeciálne technológie. Bratislava: Vydavateľstvo STU (2006) ISBN 80-227-2364-9. (In Slovak).

Google Scholar

[2] L. Sobotová, M. Karková, Kvalita rezacej vody pri technológií delenia materiálov vodným lúčom 2012 [online]. [cit.10.10.2016]. Available on internet (In Slovak): https://www.sjf.tuke.sk/transferinovacii/pages/archiv/transfer/24-2012/pdf/125-128.pdf.

Google Scholar

[3] S. Hloch, J. Hlaváček, K. Vasilko, J. Cárach, I. Samardžić, D. Kozak, I. Hlavatý, J. J. Ščučka, J. Klich, D. Klichová, D., Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53 (2014) p.537–540.

DOI: 10.1007/s00603-015-0719-9

Google Scholar

[4] J. Cárach, S. Hloch, P. Hlaváček, J. Ščučka, P. Martinec, J. Petrů, T. Zlámal, M. Zeleňák, P. Monka, D. Lehocká, J. Krolczyk, 2016. Tangential turning of Incoloy alloy 925 using abrasive water jet technology, Int. J. Adv. Manuf. Technol.82 (2016).

DOI: 10.1007/s00170-015-7489-0

Google Scholar

[5] F. Lissek, M. Kaufeld, J. Tegas, S. Hloch, 2016. Online -monitoring for abrasive waterjet cutting of CFRP via acoustic emission: Evaluation of machining parameters and work piece quality due to burst analysis. In: Procedia Engineering (2016).

DOI: 10.1016/j.proeng.2016.06.640

Google Scholar

[6] M. Hashish, A. South, Optimization Factors in Abrasive - Waterjet Machining, J. Eng. Ind. 1, (1991).

Google Scholar

[7] J. Wang, D. M. Guo, A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites, J. of Mat. Proc. Tech. (2002) vol. 121, no. 2–3, p.390–394.

DOI: 10.1016/s0924-0136(01)01246-8

Google Scholar

[8] P. Hreha, A. Radvanská, S. Hloch, V. Peržel, G. Królczyk, K. Monková, Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 77 (2015) p.763–774.

DOI: 10.1007/s00170-014-6497-9

Google Scholar

[9] R. Kumar, S. Chattopadhyaya, A. R. Dixit, B. Bora, M. Zelenak, M., J. Foldyna, S. Hloch, P. Hlavacek, J. Scucka, J. Klich, L. Sitek, P. Vilaca, Surface integrity analysis of abrasive water jet - cut surfaces of friction stir welded joints. (2017).

DOI: 10.1007/s00170-016-8776-0

Google Scholar

[10] M. Srivastava, R. Tripathi, S. Hloch, S. Chattopadhyaya, A. R. Dixit, Potential of using water jet peening as a surface treatment process for welded joints. In: Procedia Engineering (2016) p.472–480.

DOI: 10.1016/j.proeng.2016.06.694

Google Scholar

[11] S. Hloch, M. Gombar, A. Radvanská, Non-linear modelling and evaluation of pressure and traverse rate influence to acoustic sound pressure level at abrasive waterjet machining. Int. J. Autom. Control 1, (2007).

DOI: 10.1504/ijaac.2007.014019

Google Scholar

[12] B. Jurisevic, D. Brissaud, M. Junkar, Monitoring of abrasive water jet (AWJ) cutting using sound detection. Int. J. Adv. Manuf. Technol. 24 (2004) 733–737.

DOI: 10.1007/s00170-003-1752-5

Google Scholar

[13] A. W. Momber, R. Kovacevic, Principles of Abrasive Water Jet Machining. London: Springer –Verlag, (1998).

DOI: 10.1007/978-1-4471-1572-4

Google Scholar

[14] M. K. Kulekci, Processes and apparatus developments in industrial waterjet applications. Int. J. Mach. Tools Manuf. 42 (2002) p.1297–1306.

DOI: 10.1016/s0890-6955(02)00069-x

Google Scholar

[15] S. Hloch, J. Valíček, Topographical anomaly on surfaces created by abrasive waterjet. Int. J. Adv. Manuf. Technol. 59 (2012) p.593–604.

DOI: 10.1007/s00170-011-3511-3

Google Scholar

[16] A. Mičietová. Nekonvenčné metódy obrábania. Žilina: Vydavateľstvo ŽU, (2001). (In Slovak).

Google Scholar