[1]
B. Hausnerova, B. N. Mukund, D. Sanetrnik, Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size, In Powder Technology, Volume 312, 2017, pp.152-158.
DOI: 10.1016/j.powtec.2017.02.023
Google Scholar
[2]
W. S. Labiapari, M. C. de Alcântara, H. L. Costa, J. Daniel B. De Mello, Wear debris generation during cold rolling of stainless steels, In Journal of Materials Processing Technology, Volume 223, 2015, pp.164-170.
DOI: 10.1016/j.jmatprotec.2015.03.050
Google Scholar
[3]
A. J. Pinkerton, L. Li, An investigation of the effect of pulse frequency in laser multiple-layer cladding of stainless steel, In Applied Surface Science, Volumes 208–209, 2003, pp.405-410.
DOI: 10.1016/s0169-4332(02)01420-4
Google Scholar
[4]
D. Gu, Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods, In Materials & Design, Volume 30, Issue 8, 2009, pp.2903-2910.
DOI: 10.1016/j.matdes.2009.01.013
Google Scholar
[5]
SS 316L - 047: Powder for additive manufacturing. RENISHAW: apply innovation [online]. United Kingdom: Renishaw, 2015 [cit. 2017-04-30]. Available from: renishaw. com/additive.
Google Scholar
[6]
N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, Ch. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, In Additive Manufacturing, Volumes 1–4, 2014, pp.77-86.
DOI: 10.1016/j.addma.2014.08.001
Google Scholar
[7]
K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting, In Materials Science and Engineering: A, Volume 625, 2015, pp.221-229.
DOI: 10.1016/j.msea.2014.12.018
Google Scholar
[8]
E. Yasa, J-P. Kruth, Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting, In Procedia Engineering, Volume 19, 2011, pp.389-395.
DOI: 10.1016/j.proeng.2011.11.130
Google Scholar
[9]
S.M. Mandalan, F. Yusof, R.S. Zhang, Y., Luo, Z., Ling, Z. Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints (2017).
DOI: 10.1016/j.jmatprotec.2017.07.006
Google Scholar
[10]
A. Kudzal, B. McWilliams, C. Hofmeister, F. Kellogg, J. Yu, J. Taggart-Scarff, J. Liang, Effect of scan pattern on the microstructure and mechanical properties of Powder Bed Fusion additive manufactured 17-4 stainless steel (2017).
DOI: 10.1016/j.matdes.2017.07.047
Google Scholar
[11]
Q. Xue, Liao, Xiaozhou., Zhu, Yuntian., Gray, G., Formation mechanisms of nanostructures in stainless steel during high-strain-rate severe plastic deformation. Materials Science and Engineering: A, Volume 410, 2005, pp.252-256.
DOI: 10.1016/j.msea.2005.08.022
Google Scholar
[12]
A. Fedorikova, R. Hudak, J. Zivcak, R. Bidulsky, P. Petrousek, J. Bidulska, R. Kocisko, V. Rajtukova, Mechanical properties of powder CoCrW-alloy prepared by AM technology. MM Science Journal, Volume 6, 2016, pp.1586-1589.
DOI: 10.17973/mmsj.2016_12_2016189
Google Scholar
[13]
D. Manfredi, R. Bidulsky. Laser powder bed fusion of aluminum alloys. Acta Metallurgica Slovaca. 2017, 23(3), 276. ISSN 1338-1156.
DOI: 10.12776/ams.v23i3.988
Google Scholar