Preparation and Investigation of Tm3+- Doped Li3Gd3Te2O12 Blue-Emitting Phosphor

Article Preview

Abstract:

A novel blue-emitting phosphor, Li3Gd3Te2O12:Tm3+ for white light-emitting diodes (W-LEDs) was prepared by solid-state synthesis and its structure and luminescence properties were investigated. This phosphor shows a satisfactory blue performance (peak at 458 nm) due to the 1D23F4 transition of Tm3+ excited by 361 nm light. Investigation of Tm3+ content dependent emission spectra indicates that x = 0.03 is the optimum doping content of Tm3+ ions in the Li3Gd3Te2O12 host. The critical distance and the concentration quenching mechanism were also investigated. In particular, the color purity of as-prepared sample is close to that of the commercial blue phosphor BaMgAl10O17:Eu2+ (BAM:Eu2+). The present work suggests that the Li3Gd3Te2O12:Tm3+ phosphor is a potential blue-emitting candidate for the application in the near-UV WLEDs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-118

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. O'Callaghan, D.R. Lynham, E.J. Cussen, G.Z. Chen, Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu), Chem. Mater. 18 (2006) 4681-4689.

DOI: 10.1002/chin.200650006

Google Scholar

[2] M.P. O'Callaghan, A.S. Powell, J.J. Titman, G.Z. Chen, E.J. Cussen, Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3+xNd3Te2−xSbxO12, Chem. Mater. 20 (2008) 2360-2369.

DOI: 10.1021/cm703677q

Google Scholar

[3] E.J. Cussen, T.W.S. Yip, G. O'Neill, M.P. O'Callaghan, A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12, J. Solid State Chem. 184 (2011) 470-475.

DOI: 10.1016/j.jssc.2010.12.021

Google Scholar

[4] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev. 43 (2014) 4714-4727.

DOI: 10.1039/c4cs00020j

Google Scholar

[5] A. Katelnikovas, S. Sakirzanovas, D. Dutczak, J. Plewa, D. Enseling, H. Winkler, A. Kareiva, T. Jüstel, Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs, J. Lumin. 136 (2013) 17-25.

DOI: 10.1016/j.jlumin.2012.11.012

Google Scholar

[6] Z. Xia, Z. Xu, M. Chen, Q. Liu, Recent developments in the new inorganic solid-state LED phosphors, Dalton Trans. 45 (2016) 11214-11232.

DOI: 10.1039/c6dt01230b

Google Scholar

[7] R. Yu, C. Wang, J. Chen, Y. Wu, H. Li, H. Ma, Photoluminescence characteristics of Eu3+-doped double-perovskite phosphors, ECS J. SolidState Sci. Technol.3 (2014) R33-R37.

DOI: 10.1149/2.013403jss

Google Scholar

[8] A. Tauber, C.G. Whinfrey, E. Banks, The crystal chemistry of some germanium garnets, J. Phys. Chem. Solids 21 (1961) 25-32.

DOI: 10.1016/0022-3697(61)90208-6

Google Scholar

[9] W. Zhang, H.J. Seo, Luminescence and structure of a novel red-emitting phosphor Eu3+-doped tellurate garnet Li3Y3Te2O12, J. Alloys Compd. 553 (2013) 183-187.

DOI: 10.1016/j.jallcom.2012.11.118

Google Scholar

[10] S.H. Sohn, Y. Hamakawa, Electroluminescence in oxygen co‐doped ZnS:TmF3 and ZnS:Tm, Li thin‐film devices, Appl. Phys. Lett. 62 (1993) 2242-2244.

DOI: 10.1063/1.109429

Google Scholar

[11] Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-J. Lin, Y.-S. Chang, High color purity phosphors of LaAlGe2O7 doped with Tm3+ and Er3+, Appl. Phys. Lett. 89 (2006) 081110.

DOI: 10.1063/1.2337275

Google Scholar

[12] S.H. Yang, C.H. Yen, C.M. Lin, P.J. Chiang, Energy transfer mechanism and luminescence properties of color tunable LaPO4:Tm,Eu phosphor, Ceram. Int. 41 (2015) 8211-8215.

DOI: 10.1016/j.ceramint.2015.02.042

Google Scholar

[13] J. Li, H. Yan, F. Yan, A novel high color purity blue-emitting phosphor: CaBi2B2O7:Tm3+, Mater. Sci. Eng., B 209 (2016) 56-59.

DOI: 10.1016/j.mseb.2016.03.004

Google Scholar

[14] Y.-P. Peng, X. Yuan, J. Zhang, L. Zhang, The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission, Sci. Rep. 4 (2014) 5256(1)-5.

DOI: 10.1038/srep05256

Google Scholar

[15] W. Zhang, H.J. Seo, Luminescence and structure of a novel red-emitting phosphor Eu3+-doped tellurate garnet Li3Y3Te2O12, J. Alloys Compd. 553 (2013) 183-187.

DOI: 10.1016/j.jallcom.2012.11.118

Google Scholar

[16] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, ActaCrystallogr., Sect. A A32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[17] B. Han, J. Zhang, P. Li, H. Shi, KBaBP2O8:Tm3+: a novel blue emitting phosphor with high color purity, JETP Lett., 99 (2014) 561-564.

DOI: 10.1134/s0021364014100063

Google Scholar

[18] H.-J. Lin, Y.-S. Chang, Blue-emitting phosphor of YInGe2O7 doped with Tm3 + ions, Electrochem. Solid-State Lett. 10 (2007) J79-J82.

DOI: 10.1149/1.2732076

Google Scholar

[19] G. Zhao, Q. Yang, Q. Liu, S. Lu, Preparation and spectroscopic properties of Tm3+:(Y0.9La0.1)2O3 transparent ceramics, J. Alloys Compd. 583 (2014) 372-375.

DOI: 10.1016/j.jallcom.2013.08.179

Google Scholar

[20] L. Beauzamy, B. Moine, R.S. Meltzer, Y. Zhou, P. Gredin, A. Jouini, K.J. Kim, Quantum cutting effect in KY3F10:Tm3+, Phys. Rev. B 78 (2008) 184302(1)-11.

Google Scholar

[21] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Heidelberg (1994) 46.

Google Scholar

[22] L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions, J. Electrochem. Soc. 114 (1967) 1048-1053.

DOI: 10.1149/1.2424184

Google Scholar