Conducting Properties of Polyaniline Emeraldine Salt on Paper in the Low-Frequency Region

Article Preview

Abstract:

Polyaniline emeraldine salt (PAni-ES) was successfully deposited on paper through layer-by-layer technique. In this method, a paper was alternately dipped in aniline monomer and an oxidizing agent for different dipping cycles. This process produced green PAni-ES on paper. The morphology of the samples showed polymeric networks with pores, fiber-like structures and aggregates. There is a transition from frequency-independent to frequency-dependent conductivities of the samples. The conductivity increased with increasing number of dipping cycles. The frequency-dependent conductivities follow the power-law behavior reflecting conducting network and hopping mechanisms. Lastly, the conductivities with frequency followed a scaling behavior reflecting a common physical mechanism in PAni-ES on paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-76

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Youssef, S. A. Mohammed, M. S. Abdel-Aziz, M. E. Abdel-Aziz, G. Turky and S. Kamel: Carbohydrate Polymer Vol. 147 (2016), pp.333-43.

DOI: 10.1016/j.carbpol.2016.03.085

Google Scholar

[2] J. Li, X. Qian, L. Wang and X. An: BioResources Vol. 5 (2010), pp.712-726.

Google Scholar

[3] X. Qian, J. Shen, G. Yu and X. An:, BioResources Vol. 5 (2010), pp.899-907.

Google Scholar

[4] Y. Zhou, C. Ding, X. Qian and X. An: Carbohydrate Polymer Vol. 115 (2015), pp.670-676.

Google Scholar

[5] M. Idrees, A. Razaq, A. Islam, S. Yasmeen, K. Sultana, M. H. Asif, M. Nadeem: Synthetic Metals Vol. 232 (2017), pp.138-143.

DOI: 10.1016/j.synthmet.2017.08.009

Google Scholar

[6] S. Bhadra, D. Khastgir, N. Singha and J. H. Lee: Progress in Polymer Science Vol. 34 (2009), pp.783-810.

DOI: 10.1016/j.progpolymsci.2009.04.003

Google Scholar

[7] J. Huang and R.B. Kaner: American Chemical Society Vol. 126 (2004), pp.851-855.

Google Scholar

[8] J. Stejskal and R. G. Gilbert: Pure Applied Chemistry Vol. 74 (2002), pp.857-67.

Google Scholar

[9] M. Trchová and J. Stejskal: Pure Applied Chemistry Vol. 83 (2011), pp.1803-1817.

Google Scholar

[10] X. Yan., Z. Tai, J. Chen and Q. Xue: Nanoscale Vol. 3 (2011), pp.212-216.

Google Scholar

[11] T. Niesen and M. De Guire: Solid State Ionics Vol. 151 (2002), 61-8.

Google Scholar

[12] H. Pathan and C. Lokhande: Bulletin of Materials Science Vol. 27 (2004), 2, pp.85-111.

Google Scholar

[13] J. K. Pamatmat, A. V. Gillado and M. U. Herrera: IOP Conference Series: Materials Science and Engineering Vol. 201 (2017), 012041.

Google Scholar

[14] N. F. Mott and E.A. Davis: Electronic Processes Non-Crystalline Materials (Oxford University Press, Oxford, 1979).

Google Scholar

[15] M. P. J. van Staveren, H. B. Brom, and L. J.de Jongh: Phys. Reports Vol. 208 (1991), pp.1-96.

Google Scholar

[16] E.Ahlatcıoğlu Özerol, B.F. Şenkal and M.Okutan: Microelectronic Engineering Vol. 146 (2015), p.76–80.

DOI: 10.1016/j.mee.2015.03.062

Google Scholar

[17] D. L. Sidebottom: Physical Review Letters Vol. 82 (1999), pp.3653-3656.

Google Scholar

[18] J. Lloyd-Hughes and T. I. Jeon: Journal of Infrared, Millimeter, and THz Waves Vol. 33 (2012), pp.871-925.

Google Scholar

[19] A. N. Papathanassiou: Journal of Physics D: Applied Physics Vol. 35 (2002) L88.

Google Scholar

[20] B. Rolling, A. Happe, K. Funke, and M. D. Ingram: Physical Review Letters Vol. 78 (1997), p.2160.

Google Scholar

[21] K.-M. Jäger, D. H. McQueen, I. A. Tchmutin, N. G. Ryvkina and M. Klüppel: Journal of Physics D: Applied Physics Vol. 30, No. 17 (2001).

Google Scholar