Effect of Arenga Pinnata “Ijuk” Fiber as Nucleating Agent on Crystallization Kinetics of Impact Polypropylene Copolymer

Article Preview

Abstract:

Impact Polypropylene Copolymer (IPC) is one of the PP type which is widely used. IPC was made with addition of ethylene in PP which decreases PP crystallinity. Many efforts have been made to improve the properties of PP crystallinity by addition of nucleating agents. In this study, we use Arenga Pinnata “Ijuk” fiber as PP nucleating agent. In order to determine the effect of “Ijuk” fiber as nucleating agents in kinetics aspect, we used DSC measurement based on Avrami equation. The results showed that the addition of ijuk decreases crystallizationhalf timeand dimension of crystal growth which indicate the effects of “Ijuk” fiber as a nucleating agent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Chen, B. Qiu, Y. Shangguan, Y. Song, Q. Zheng, Materials & Design 69 (2015) 56-63.

Google Scholar

[2] S. Song, P. Wu, J. Feng, M. Ye, Y. Yang, Polymer 50 (2009) 286-295.

Google Scholar

[3] C.-F. Ou, European Polymer Journal 38 (2002) 467-473.

Google Scholar

[4] C. De Rosa, F. Auriemma, O. Tarallo, R. Di Girolamo, E. M. Troisi, S. Esposito, D. Liguori, F. Piemontasi, G. Vitale and G. Morini, Polymer Chemistry 8.4 (2017): 655-660.

DOI: 10.1039/c6py01950a

Google Scholar

[5] Y. F. Zhang, D. Li and Q. J. Chen, Colloid and Polymer Science, 1-10 (2017).

Google Scholar

[6] N.G.V. Fundador, Y. Enomoto-Rogers, A. Takemura, T. Iwata, Polymer Degradation and Stability 98 (2013) 1064-1071.

DOI: 10.1016/j.polymdegradstab.2013.01.010

Google Scholar

[7] L. Guo, F. Chen, Y. Zhou, X. Liu, W. Xu, Composites Part B: Engineering 68 (2015) 300-309.

Google Scholar

[8] M. Chalid, E. Yuanita, J. Pratama, Materials Science Forum, vol 827, 2015, pp.326-331.

Google Scholar

[9] E. Yuanita, J.N. Pratama, J.H. Mustafa, M. Chalid, Procedia Chemistry 16 (2015) 608-615.

DOI: 10.1016/j.proche.2015.12.099

Google Scholar

[10] J.N.P. Evana Yuanita, Mochamad Chalid, Macromolecular Symposia 371 (2017) 61-68.

Google Scholar

[11] X. Jiang, S. Luo, K. Sun, X. Chen, Express Polymer Letters 1 (2007) 245-251.

Google Scholar

[12] M. Avrami, The Journal of chemical physics 9 (1941) 177-184.

Google Scholar

[13] S.M.L. Rosa, N. Rehman, M.I.G. de Miranda, S.M.B. Nachtigall, C.I.D. Bica, Carbohydrate Polymers 87 (2012) 1131-1138.

DOI: 10.1016/j.carbpol.2011.08.084

Google Scholar

[14] C. Uma Maheswari, K. Obi Reddy, E. Muzenda, B.R. Guduri, A. Varada Rajulu, Biomass and Bioenergy 46 (2012) 555-563.

DOI: 10.1016/j.biombioe.2012.06.039

Google Scholar

[15] H. Tibolla, F.M. Pelissari, F.C. Menegalli, LWT - Food Science and Technology 59 (2014) 1311-1318.

DOI: 10.1016/j.lwt.2014.04.011

Google Scholar

[16] E. Abraham, B. Deepa, L.A. Pothen, J. Cintil, S. Thomas, M.J. John, R. Anandjiwala, S.S. Narine, Carbohydrate Polymers 92 (2013) 1477-1483.

DOI: 10.1016/j.carbpol.2012.10.056

Google Scholar

[17] S. Reyes-de Vaaben, A. Aguilar, F. Avalos, L.F. Ramos-de Valle, Journal of Thermal Analysis and Calorimetry 93 (2008) 947.

DOI: 10.1007/s10973-007-8591-9

Google Scholar