Mechanical Interlocking of an Aluminum Alloy and SS400 Structural Steel through Friction-Stir Spot Forming (FSSF)

Article Preview

Abstract:

In the present study, a novel method for mechanically interlocking the dissimilar alloys of A6061-T6 aluminum alloy and SS400 structural steel using friction-stir forming (FSF) is suggested. In this study, the aluminum alloy is placed on top of a steel sheet containing a screwed hole. The present study suggests that friction-stir spot forming (FSSF) can be used to form a mechanical interlock between the aluminum alloy and steel sheet. FSSF is conducted on top of the aluminum alloy, which produces sufficient heat to plasticize the aluminum alloy. This results in a flow of aluminum into the screw hole in the steel, due to the plastic deformation, thereby mechanically interlocking the aluminum with the steel. Moreover, with the proposed method, the authors present a new concept of an easily separable joining of dissimilar alloys. The mechanical properties of the developed interlock are investigated through tensile and hardness tests and microstructural observation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nishihara, Development of Friction Stir Forming, Mater. Sci. Forum. 426-432 (2003) 2971-2978.

DOI: 10.4028/www.scientific.net/msf.426-432.2971

Google Scholar

[2] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, and C. J. Dawes, Friction Stir Welding, International Patent Application No. PCT/GB92/02203 and GB Patent Application 9125978. 8, U. S. Patent 5460317. (1991).

Google Scholar

[3] M. W. Mahoney, Friction Stir Welding and Processing, J. JWS. 76 (2007) 95-101.

Google Scholar

[4] M. Mahoney, R. S. Mishra, T. Nelson, J. Flintoff, R. Islamgaliev, and Y. Hovansky, High strain rate, Thick Section Superplasticity Created via Friction Stir Processing, Friction Stir Welding and Processing, Edited by K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatiin, and D. P. Field, The Minerals, Met. & Mater. Soc. (2001).

DOI: 10.1002/9781118062302.ch43

Google Scholar

[5] H. Mofidi, T. Hara, T. Nishihara, Production of a Superplastic Vibration-Damping Steel Sheet Composite using Friction Stir Forming, Mater. Sci. Forum. 838-839 (2016) 574-580.

DOI: 10.4028/www.scientific.net/msf.838-839.574

Google Scholar

[6] H. Mofidi, T. Nishihara, Friction Stir Forming for Mechanical Interlocking of Insulated Copper Wire and Zn-22Al Superplastic Alloy, Welding in the World, Int. J. Mater. Join. 61(1) (2017) 44-55.

DOI: 10.1007/s40194-016-0406-9

Google Scholar

[7] H. Mofidi, T. Nishihara, Friction Stir Forming for Mechanical Interlocking of an Ultra-thin Stainless Steel Strands with Aluminum Alloys, Def. Diffus. Forum. 382 (2018) 114-119.

DOI: 10.4028/www.scientific.net/ddf.382.114

Google Scholar

[8] T. Ohashi, J. Z. Chen, T. Nishihara, H. Mofidi, Friction Stir Forming of Aluminum Alloy Gear-Racks, Key Eng. Mater. 725 (2016) 665-670.

DOI: 10.4028/www.scientific.net/kem.725.665

Google Scholar

[9] T. Ohashi, H. Mofidi, T. Ikeya, T. Nishihara, Friction Stir Forming of A5083 Aluminum Alloy Gear-Racks with WC Particles Embedded in Tooth Surface, Key Eng. Mater. 723 (2016) 148-153.

DOI: 10.4028/www.scientific.net/kem.723.148

Google Scholar

[10] T. Ohashi, H. Mofidi, T. Nishihara, Cylindrical Pin Embossment on A5083 Aluminum Alloy Substrate Fabricated by Friction Stir Forming, Key Eng. Mater. 730 (2016) 253-258.

DOI: 10.4028/www.scientific.net/kem.730.253

Google Scholar

[11] T. Ohashi, H. Mofidi, T. Nishihara, Observation of Material Flow in Friction Stir Forming for A5083 Aluminum Alloy Gear-Rack, Mater. Sci. Forum. 889 (2016) 113-118.

DOI: 10.4028/www.scientific.net/msf.889.113

Google Scholar

[12] T. Ohashi, H. Mofidi, T. Nishihara, Low Height Ultra-Thin Fin on A5083 Aluminum Plate Fabricated by Friction-Stir Forming, Proc. Eng. 174 (2017) 74–81.

DOI: 10.1016/j.proeng.2017.01.150

Google Scholar

[13] T. Ohashi, H. Mofidi, T. Nishihara, Vertical Wall on an Aluminum Alloy Plate Fabricated, Key Eng. Mater. 748 (2017) 202-206.

DOI: 10.4028/www.scientific.net/kem.748.202

Google Scholar

[14] T. Ohashi, H. Mofidi, T. Nishihara, Fastenerless-Riveting Utilizing Friction Stir Forming for Dissimilar Materials Joining, Key Eng. Mater. 751 (2017) 186-191.

DOI: 10.4028/www.scientific.net/kem.751.186

Google Scholar

[15] T. Ohashia, H. Mofidi, T. Nishihara, Rib-Structures on A5083 Aluminum Alloy Sheet Generated by Friction Stir Forming, Proc. Eng. 207 (2017) 1153–1158.

DOI: 10.1016/j.proeng.2017.10.1141

Google Scholar

[16] K. Yamamura, K. Torikai, and T. Nishihara, Friction Stir Welding and Processing VI edited by R. Mishra, M W. Mahoney, Y. Sato, Y. Hovanski, R. Verma (TMS, 2011) 281-288.

DOI: 10.1002/9781118062302

Google Scholar

[17] M. W. Mahoney, W. Harrigan and J. A. Wert, Joint in Aluminum INALCO'98. (1998) 261-270.

Google Scholar

[18] T. Ohashi, H. Mofidi, and T. Nishihara, Cylindrical Extrusions on A5083 Aluminum Alloy Plate Fabricated by Friction Stir Forming, 20th International ESAFORM Conference on Material Forming April 26-28, 2017, Ireland, AIP Conference Proceedings 1896, 080002.

DOI: 10.1063/1.5008082

Google Scholar