[1]
B.E. Paton, A.Ya. Ishchenko, A.I. Ustinov, Application of nanotechnology of permanent joining of advanced light-weight metallic materials for aerospace engineering, The Paton Welding Journal. 12 (2008) 2-8.
Google Scholar
[2]
K. Pal, M.M. Mohan, S. Thomas, Dynamic application of novel electro-optic switchable device modulation by graphene oxide dispersed liquid crystal cell assembling CdS nanowires, Organic Electronics: physics, materials, applications. 39 (2016).
DOI: 10.1016/j.orgel.2016.09.019
Google Scholar
[3]
U. Reisgen, B. Balashov, L. Stein, C., Nanophase hardfacing new possibilities for functional surfaces, Mater. Sci. Forum. 638-642 (2010) 870-875.
DOI: 10.4028/www.scientific.net/msf.638-642.870
Google Scholar
[4]
Т.К. Lee, H.J. Kim, B.Y. Kang, S.K. Hwang, Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds, ISIJ Int. 40(12) (2000) 1260-1268.
DOI: 10.2355/isijinternational.40.1260
Google Scholar
[5]
Jun Seok Seo, Нее Jin Kim, Changhee Lee, Effect of Ti addition on weld microstructure and inclusion characteristics of bainitic GMA welds, ISIJ International. 53(5) (2013) 880-886.
DOI: 10.2355/isijinternational.53.880
Google Scholar
[6]
W. Vanovsek, С Bernhard, M. Fiedler, G. Posch, Influence of aluminum content on the characterization of microstructure and inclusions in high-strength steel welds, Weld. World. 57(1) (2013) 73-83.
DOI: 10.1007/s40194-012-0008-0
Google Scholar
[7]
K. Pietrzak, M. Chmielewski, W. Włosiński, Sintering Al2O3 – Cr Composites Made From Micro- and Nanopowders, Sci. Sintering. 36 (2004) 171-177.
DOI: 10.2298/sos0403171p
Google Scholar
[8]
J. Kanungo, P. Kumar Basu, A. Lloyd Spetz, S. Basu, Detection of Hydrogen by Noble Metal Treated Nanoporous Si and ZnO Thin Films, Sens. Transducers. 10 (2011) 131-141.
Google Scholar
[9]
Z. Surowiec, M. Wiertel, W. Gac, M. Budzynski, The influence of reduction process on the iron-molybdenum nanoparticles in modifie MCM-41 silica, Acta Phys. Pol. 125(4) (2014) 846-849.
DOI: 10.12693/aphyspola.125.846
Google Scholar
[10]
N.A. Kozyrev, G.V. Galevskiy, D.A. Titov, D.E. Kolmogorov, D.E. Gusarov On Quality of a Weld Bead Using Power Wire 35V9H3SF, IOP Conference Series: Materials Science and Engineering, 125(1) (2016) art. no. 012028.
DOI: 10.1088/1757-899x/125/1/012028
Google Scholar
[11]
G.V. Galevskiy, V.V. Rudneva, S.G. Galevskiy, D.P. Il'Yashchenko, D.S. Kartsev, Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation, IOP Conference Series: Materials Science and Engineering. 125(1) (2016).
DOI: 10.1088/1757-899x/125/1/012032
Google Scholar
[12]
H. Eifert, D. Kupp, B. Günther, Production methods and applications of low impurity metal nanopowders, Powder Metall. 43(4) (2000) 310-313.
Google Scholar
[13]
D. Bhattacharya, R.K. Gupta, Nanotechnology and potential of microorganisms, Crit. Rev. Biotechnol. 25 (2005) 199–204.
Google Scholar
[14]
P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanopart Res. 10 (2007) 507–517.
DOI: 10.1007/s11051-007-9275-x
Google Scholar
[15]
Y.J. Tang, D.J. Smith, F.E. Spada, H. Harp, A.E. Berkowitz, Structure and phase transformation of ferromagnetic shape memory alloy Ni49Mn30Ga21 fine particles prepared by spark erosion, Intermag 2003 - Program of the 2003 IEEE International Magnetics Conference. (2003).
DOI: 10.1109/intmag.2003.1230417
Google Scholar
[16]
A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, Plasma-chemical synthesis of copper oxide nanoparticles in a low-pressure arc discharge, Vacuum. 133 (2016) 25-30.
DOI: 10.1016/j.vacuum.2016.08.007
Google Scholar
[17]
A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, Plasma-chemical synthesis of Fe3O4 nanoparticles for doping of high-temperature superconductors, J. Supercond. Novel Magn. 30 (2017) 311-316.
DOI: 10.1007/s10948-016-3709-6
Google Scholar
[18]
A.A. Lepeshev, A.V. Ushakov, I.V. Karpov, D.A. Balaev, A.A. Krasikov, A.A. Dubrovskiy, D.A. Velikanov, M.I. Petrov, Particularities of the magnetic state of CuO nanoparticles produced by low-pressure plasma arc discharge, J. Supercond. Novel Magn. 30(4) (2017).
DOI: 10.1007/s10948-016-3885-4
Google Scholar
[19]
A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, Peculiarities of magnetic behavior of CuO nanoparticles produced by plasma-arc synthesis in a wide temperature range, J. Supercond. Novel Magn. 30(12) (2017) 3351-3354.
DOI: 10.1007/s10948-017-4311-2
Google Scholar
[20]
Q. Zhou, Q. Zhang, W. Yan, X. Liu, J. Zhang, J. Zhao, L. Pang, Effect of medium on deposited Energy in microsecond electrical explosion of wires, IEEE Trans. Plasma Sci. 40(9) (2012) 2198-2204.
DOI: 10.1109/tps.2012.2205696
Google Scholar
[21]
Y.S. Lee, B. Bora, S.L. Yap, C.S. Wong, Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process, Current Applied Physics. 12 (2012) 199-203.
DOI: 10.1016/j.cap.2011.06.001
Google Scholar
[22]
C.S. Wong, B. Bora, S.L. Yap, Y.S. Lee, H. Bhuyan, M. Favre, Effect of ambient gas species on the formation of Cu nanoparticles in wire explosion process, Current Applied Physics. 12 (2012) 1345-1348.
DOI: 10.1016/j.cap.2012.03.024
Google Scholar
[23]
Y.S. Kwon, Y.H. Jung, A.P. Illyn, J.S. Kim, N.A. Yavorovsky, Ultra-fine powder by wire explosion method, Scr. Mater. 44(8-9) (2001) 2247-2251.
DOI: 10.1016/s1359-6462(01)00757-6
Google Scholar
[24]
K. Ellmer, Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells, Phys. Stat. Sol. (b). 245(9) (2008) 1745-1760.
DOI: 10.1002/pssb.200879545
Google Scholar
[25]
S. Brunken, R. Mientus, K. Ellmer, Metal-sulfide assisted rapid crystallization of highly (001)-textured tungsten disulphide (WS2) films on metallic back contacts, Phys. Stat. Sol. (a). 209(2) (2012) 317-322.
DOI: 10.1002/pssa.201127524
Google Scholar
[26]
J.Y. Wang, T.C. Chang, L.Z. Chang, S. Lee, Effect of Al and Mn Content on the Mechanical Properties of Various ECAE Processed Mg-Li-Zn Alloys, Mater. Trans. 47(4) (2006) 971-976.
DOI: 10.2320/matertrans.47.971
Google Scholar
[27]
A Klimpel, T Kik, Erosion and abrasion wear resistance of GMA wire surfaced nanostructural deposits, Arch. Mater. Sci. Eng. 30(2) (2008) 121-124.
Google Scholar
[28]
Y. Zhu, K. Yukimura, C.X. Ding, P.Y. Zhang, Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying, Thin Solid Films. 388(1-2) (2001) 277-282.
DOI: 10.1016/s0040-6090(01)00805-7
Google Scholar
[29]
P. Wu, H.M. Du, X.L. Chen, Z.Q. Li, H.K. Bai, E.Y. Jiang, Influens of WC particle behavior on the wear resistance properties of Ni-WC composite coatings, Wear. 257(1-2) (2004) 142-147.
DOI: 10.1016/j.wear.2003.10.019
Google Scholar
[30]
A Gualco, H.G. Svoboda, E.S. Surian, Effect of welding parameters on microstructure of Fe-based nanostructured weld overlay deposited through FCAW-S, Weld. Prod. 2 (2016) 1-8.
DOI: 10.1080/09507116.2015.1096533
Google Scholar
[31]
C. Cuixin, P. Huifen, L. Ran, L. Yuanyuan, Z. Pu, Research on inclusions in low alloy steel welds with nano alumina addition, J. Comput. Theor. Nanosci. 9(9) (2012) 1533-1536.
Google Scholar
[32]
C. Chen, H. Xue, C. Chen, (...),X. Han, H. Tang, Effect of nano oxide on microstructure and mechanical properties of low alloy high strength steel welds, Trans. China Weld. Inst. 37(9) (2016) 29-34.
Google Scholar
[33]
A. Saha, S.C. Mondal, Multi-objective Optimization of Welding Parameters in MMAW for Nano-structured Hardfacing Material Using GRA Coupled with PCA, Trans. Indian Inst. Met. 70(6) (2017) 1491-1502.
DOI: 10.1007/s12666-016-0945-1
Google Scholar
[34]
X.S. Liang, C.X. Chen, H.F. Peng, Effect of nano-scale titanium oxide on the microstructure of weld deposits for high strength low alloyed steel, Mater. Sci. and Technol. 17(2) (2009) 41-45.
Google Scholar
[35]
M. Aghakhani, P. Naderian, Modeling and optimization of dilution in SAW in the presence of Cr2O3 nano-particles, Int. J. Adv. Manuf. Technol. 78(9-12) (2015) 1665-1676.
DOI: 10.1007/s00170-014-6733-3
Google Scholar
[36]
M. Aghakhani, M.R. Ghaderi, M.M Jalilian, A.A. Derakhshan, Predicting the combined effect of TiO2 nano-particles and welding input parameters on the hardness of melted zone in submerged arc welding by fuzzy logic, J. Mech. Sci. Technol. 27(7) (2013).
DOI: 10.1007/s12206-013-0523-y
Google Scholar
[37]
T. Petrov, P. Tashev, M. Kandeva, Wear resistance of surface layers modified with AL2O3 and TICN nanopowders weld overlaid using TIG and ITIG methods, J. Balk. Tribol. Assoc. 22(1) (2016) 304–315.
Google Scholar
[38]
U. Reisgen, B. Balashov, L. Stein, C. Geffers, Nanophase hardfacing new possibilities for functional surfaces, Mater. Sci. Forum. 638-642 (2010) 870-875.
DOI: 10.4028/www.scientific.net/msf.638-642.870
Google Scholar
[39]
P.W. Hsu, R.S. Chen, F.H. Kao, (...), S.Y. Tsai, J.G. Duh, Martensite nucleation site and grain refinement in duplex titanium alloy weldment by active flux with nanoparticle addition, Sci. Technol. Weld. Joining. 16(6) (2011) 514-521.
DOI: 10.1179/1362171811y.0000000038
Google Scholar
[40]
V. Wesling, A. Schram, T. Müller and K. Treutler, Influencing the arc and the mechanical properties of the weld metal in GMA-welding processes by additive elements on the wire electrode surface, IOP Conf. Ser.: Mater. Sci. Eng. 118 (2016) 012006.
DOI: 10.1088/1757-899x/118/1/012006
Google Scholar
[41]
J Yang, X. Hou, P. Zhang, (...), X. Ren, Q. Yang, Mechanical properties of the hypereutectoid Fe-Cr-C hardfacing coatings with different nano-Y2O3 additives and the mechanism analysis, Mat. Sci. and Eng. 665 (2016) 346-354.
DOI: 10.1016/j.msea.2015.12.087
Google Scholar
[42]
S. Mohan, S.P. Sivapirakasam, M.C. Santhosh Kumar, M. Surianarayanan, Welding fumes reduction by coating of nano-TiO2 on electrodes, J. Mater. Process. Technol. 219 (2015) 237-247.
DOI: 10.1016/j.jmatprotec.2014.12.020
Google Scholar
[43]
S.P. Sivapirakasam, S. Mohan, M.C. Santhosh Kumar, M. Surianarayanan, Welding fume reduction by nano-alumina coating on electrodes - Towards green welding process, J. Cleaner Prod. 108 (2015) 131-144.
DOI: 10.1016/j.jclepro.2015.06.132
Google Scholar
[44]
O.G. Brunov, S.A. Solodskii, Physico-mathematical modelling of the transfer of electrode metal droplets into the weld pool. Welding International, 23(12) (2009) 930-933.
DOI: 10.1080/09507110903210702
Google Scholar
[45]
D.P. Il'Yaschenko, D.A. Chinakhov, V.I. Danilov, G.V. Schlyakhova, Yu.M. Gotovshchik, Physical Nature of the Processes in Forming Structures, Phase and Chemical Compositions of Medium-Carbon Steel Welds, IOP Conference Series: Materials Science and Engineering, 91(1) (2015).
DOI: 10.1088/1757-899x/91/1/012006
Google Scholar
[46]
D.P. Il'Yaschenko, D.A. Chinakhov, V.I. Danilov, G.V. Schlyakhova, Yu.M. Gotovshchik, Increasing Strength and Operational Reliability of Fixed Joints of Tubes by MMA Welding, IOP Conference Series: Materials Science and Engineering, 91(1) (2015).
DOI: 10.1088/1757-899x/91/1/012007
Google Scholar
[47]
M.A. Kuznetsov, E.A. Zernin, V.I. Danilov, Structure, Mechanical Properties and Corrosion Resistance of Stainless Steel Surface Layers Faced Using Ultradisperse Powders of Inorganic Materials, Procedia Eng. 206 (2017) 1264-1271.
DOI: 10.1016/j.proeng.2017.10.629
Google Scholar