Experimental Study Pertaining to Microwave Sintering (MWS) of Al-Metal Matrix Composite - A Review

Article Preview

Abstract:

Aluminum metal matrix composites (Al-MMCs) is a one of the most demanding engineering material due to the combination of their light weight, excellent mechanical and tribological properties. To enhance the promising advantages of Al-MMCs, microwave sintering (MWS) is an ideal and emerging technique. The unique advantages of MWS of MMCs are ascribed to the size and distribution of the reinforcement, as well as to the grain size of the matrix along with uniform and efficient heating. The objective of this comprehensive review was to highlight the viability of sintering Al-MMC in a microwave oven, and compare the material characteristics of those with similar materials sintered in a conventional furnace.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-155

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.S. Apte and L.R. Morris (1998) Microwave sintering process, US 5736092 A.

Google Scholar

[2] H.S. Meeks, L. Lansing (1999) Metal consolidation process employing microwave heated pressure transmitting particulate, US 6309594 B1.

Google Scholar

[3] R.Q. Guo and P.K. Rohatgi (1997) Preparation of Aluminium–Fly Ash Particulate Composite by Powder Metallurgy Technique, Journal of materials science, Vol.32, p.3971–3974.

Google Scholar

[4] S. Gedevanishvili, D. Agrawal and R. Roy (1999) Microwaves combustion synthesis and sintering of intermetallics and alloys, Journal of Materials Science Letter, Vol.18, p.665–668.

Google Scholar

[5] R. Roy, Agrawal, D., Cheng, J. and Gedevanishvili, S. (1999) Full sintering of powdered metallic parts in microwave. Nature, Vol.399, p.668–670.

DOI: 10.1038/21390

Google Scholar

[6] W.L.E. Wong and M. Gupta (2007) Development of Mg/Cu nanocomposites using microwave assisted rapid sintering, Composites Science & Technology, Vol.67, p.1541–1552.

DOI: 10.1016/j.compscitech.2006.07.015

Google Scholar

[7] R. Annamalai, A. Upadhyaya and D. Agrawal (2013) An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bulletin of Materials Science, Vol.36 (3), p.447–456.

DOI: 10.1007/s12034-013-0477-9

Google Scholar

[8] A. Mondal, A. Upadhyaya and D. Agrawal (2010) Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys, Journal of Microwave Power Electomagnetic Energy, Vol.44 (1), p.28–44.

DOI: 10.1080/08327823.2010.11689768

Google Scholar

[9] A. Mondal, A. Upadhyaya and D. Agrawal (2010) Microwave and conventional sintering of 90W–7Ni–3Cu alloys with premixed and prealloyed binder phase. Material science and Engineering, Vol.527 (26), p.6870–6878.

DOI: 10.1016/j.msea.2010.07.074

Google Scholar

[10] R. Annamalai, A. Upadhyaya and D. Agrawal (2013) An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bulletin of Materials Science, Vol.36 (3), p.447–456.

DOI: 10.1007/s12034-013-0477-9

Google Scholar

[11] J.U. Ejiofo, B.A. Okorie and R.G. Reddy (1997) Powder processing and properties of zircon-reinforced AI-13.5Si-2.5Mg alloy composites, Journal of Materials Engineering and Performance, Vol.6(3), pp.326-334.

DOI: 10.1007/s11665-997-0097-x

Google Scholar

[12] S.L.S. Vaucher and O. Beffort (2003) Assessment of Microwave Heating for Sintering of Al/Sic and for In-Situ Synthesis of TiC, Advanced Engineering Materials,Vol.5, pp.449-453.

DOI: 10.1002/adem.200320136

Google Scholar

[13] H. Abdizadeh, H.R. Baharvandi and K.S. Moghaddam (2008).

Google Scholar

[14] P. Veronesi, R. Rosa, E. Colombini and C. Leonelli (2015) Microwave-Assisted Preparation of High Entropy Alloys. Technologies, Vol.3(4), pp.182-97.

DOI: 10.3390/technologies3040182

Google Scholar

[15] W. Wai, L. Eugene and M. Gupta (2010) Characteristics of Aluminum and Magnesium Based Nanocomposites Processed Using Hybrid Microwave Sintering, Journal of Microwave Power and Electromagnetic Energy, Vol.44(1).

DOI: 10.1080/08327823.2010.11689773

Google Scholar

[16] E. Ghasali, M. Alizadeh, T. Ebadzadeh, M.H. Pakseresht and A. Rahbari (2015).

Google Scholar

[17] P. Yadoji, R. Peelamedu, D. Agrawal and R. Roy (2003) Microwave sintering of Ni-Zn ferrites: comparison with conventional sintering, Materials Science and Engineering B98, 269/278.

DOI: 10.1016/s0921-5107(03)00063-1

Google Scholar

[18] K. Venkateswarlu, S. Suman, V. Rajinikanth, R.K. Sahu and A.K. Ray (2010) Synthesis of TiN Reinforced Aluminium Metal Matrix Composites Through Microwave Sintering, JMEPEG, Vol.19, p.231–236.

DOI: 10.1007/s11665-009-9458-y

Google Scholar

[19] A. Mondal, A. Upadhyaya and D. Agrawal (2010) Effect of heating mode on sintering of tungsten, Int. J. Refract. Met. Hard Mater. 28, 597.

DOI: 10.1016/j.ijrmhm.2010.05.002

Google Scholar

[20] C. Padmavathi, A. Upadhyaya and D. Agrawal (2011) Effect of microwave and conventional heating on sintering behaviour and properties of Al–Mg–Si–Cu alloy, Mater. Chem. Phys. 130, 449.

DOI: 10.1016/j.matchemphys.2011.07.008

Google Scholar

[21] S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu and M. Gupta, (2013).

Google Scholar

[22] S. Mula, J. Panigrahi, P.C. Kang and C.C. Koch (2014) Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites, J. Alloys Compd. 588, 710.

DOI: 10.1016/j.jallcom.2013.11.222

Google Scholar

[23] R.R. Mishra, S. Rajesha and A.K. Sharma (2014) Microwave sintering of metal powders- A review, Int. J. Adv. Mech. Eng. 4, 315.

Google Scholar

[24] S. Sankaranarayanan, V.H. Shankar, S. Jayalakshmi, N.Q. Bau and M. Gupta (2015) Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach, J. Alloys Compd. Vol.627, 192.

DOI: 10.1016/j.jallcom.2014.12.009

Google Scholar

[25] S. Singh, Gupta, D. and V. Jain (2016) Microwave melting and processing of metal–ceramic composite castings, Proc IMechE Part B: J Engineering Manufacture 1–9.

Google Scholar

[26] R. Rani, P. Kumar, S. Singh, J.K. Juneja and C. Prakash (2017) Improvement in magnetoelectric and other physical properties of BSZT-NZF composites by microwave sintering, Journal of Alloys and Compounds, Vol.690, pp.716-719.

DOI: 10.1016/j.jallcom.2016.08.119

Google Scholar

[27] S.A.M. Krishna, T.N. Shridhar, L.Krishnamurthy (2015).

Google Scholar