[1]
P.S. Apte and L.R. Morris (1998) Microwave sintering process, US 5736092 A.
Google Scholar
[2]
H.S. Meeks, L. Lansing (1999) Metal consolidation process employing microwave heated pressure transmitting particulate, US 6309594 B1.
Google Scholar
[3]
R.Q. Guo and P.K. Rohatgi (1997) Preparation of Aluminium–Fly Ash Particulate Composite by Powder Metallurgy Technique, Journal of materials science, Vol.32, p.3971–3974.
Google Scholar
[4]
S. Gedevanishvili, D. Agrawal and R. Roy (1999) Microwaves combustion synthesis and sintering of intermetallics and alloys, Journal of Materials Science Letter, Vol.18, p.665–668.
Google Scholar
[5]
R. Roy, Agrawal, D., Cheng, J. and Gedevanishvili, S. (1999) Full sintering of powdered metallic parts in microwave. Nature, Vol.399, p.668–670.
DOI: 10.1038/21390
Google Scholar
[6]
W.L.E. Wong and M. Gupta (2007) Development of Mg/Cu nanocomposites using microwave assisted rapid sintering, Composites Science & Technology, Vol.67, p.1541–1552.
DOI: 10.1016/j.compscitech.2006.07.015
Google Scholar
[7]
R. Annamalai, A. Upadhyaya and D. Agrawal (2013) An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bulletin of Materials Science, Vol.36 (3), p.447–456.
DOI: 10.1007/s12034-013-0477-9
Google Scholar
[8]
A. Mondal, A. Upadhyaya and D. Agrawal (2010) Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys, Journal of Microwave Power Electomagnetic Energy, Vol.44 (1), p.28–44.
DOI: 10.1080/08327823.2010.11689768
Google Scholar
[9]
A. Mondal, A. Upadhyaya and D. Agrawal (2010) Microwave and conventional sintering of 90W–7Ni–3Cu alloys with premixed and prealloyed binder phase. Material science and Engineering, Vol.527 (26), p.6870–6878.
DOI: 10.1016/j.msea.2010.07.074
Google Scholar
[10]
R. Annamalai, A. Upadhyaya and D. Agrawal (2013) An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bulletin of Materials Science, Vol.36 (3), p.447–456.
DOI: 10.1007/s12034-013-0477-9
Google Scholar
[11]
J.U. Ejiofo, B.A. Okorie and R.G. Reddy (1997) Powder processing and properties of zircon-reinforced AI-13.5Si-2.5Mg alloy composites, Journal of Materials Engineering and Performance, Vol.6(3), pp.326-334.
DOI: 10.1007/s11665-997-0097-x
Google Scholar
[12]
S.L.S. Vaucher and O. Beffort (2003) Assessment of Microwave Heating for Sintering of Al/Sic and for In-Situ Synthesis of TiC, Advanced Engineering Materials,Vol.5, pp.449-453.
DOI: 10.1002/adem.200320136
Google Scholar
[13]
H. Abdizadeh, H.R. Baharvandi and K.S. Moghaddam (2008).
Google Scholar
[14]
P. Veronesi, R. Rosa, E. Colombini and C. Leonelli (2015) Microwave-Assisted Preparation of High Entropy Alloys. Technologies, Vol.3(4), pp.182-97.
DOI: 10.3390/technologies3040182
Google Scholar
[15]
W. Wai, L. Eugene and M. Gupta (2010) Characteristics of Aluminum and Magnesium Based Nanocomposites Processed Using Hybrid Microwave Sintering, Journal of Microwave Power and Electromagnetic Energy, Vol.44(1).
DOI: 10.1080/08327823.2010.11689773
Google Scholar
[16]
E. Ghasali, M. Alizadeh, T. Ebadzadeh, M.H. Pakseresht and A. Rahbari (2015).
Google Scholar
[17]
P. Yadoji, R. Peelamedu, D. Agrawal and R. Roy (2003) Microwave sintering of Ni-Zn ferrites: comparison with conventional sintering, Materials Science and Engineering B98, 269/278.
DOI: 10.1016/s0921-5107(03)00063-1
Google Scholar
[18]
K. Venkateswarlu, S. Suman, V. Rajinikanth, R.K. Sahu and A.K. Ray (2010) Synthesis of TiN Reinforced Aluminium Metal Matrix Composites Through Microwave Sintering, JMEPEG, Vol.19, p.231–236.
DOI: 10.1007/s11665-009-9458-y
Google Scholar
[19]
A. Mondal, A. Upadhyaya and D. Agrawal (2010) Effect of heating mode on sintering of tungsten, Int. J. Refract. Met. Hard Mater. 28, 597.
DOI: 10.1016/j.ijrmhm.2010.05.002
Google Scholar
[20]
C. Padmavathi, A. Upadhyaya and D. Agrawal (2011) Effect of microwave and conventional heating on sintering behaviour and properties of Al–Mg–Si–Cu alloy, Mater. Chem. Phys. 130, 449.
DOI: 10.1016/j.matchemphys.2011.07.008
Google Scholar
[21]
S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu and M. Gupta, (2013).
Google Scholar
[22]
S. Mula, J. Panigrahi, P.C. Kang and C.C. Koch (2014) Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites, J. Alloys Compd. 588, 710.
DOI: 10.1016/j.jallcom.2013.11.222
Google Scholar
[23]
R.R. Mishra, S. Rajesha and A.K. Sharma (2014) Microwave sintering of metal powders- A review, Int. J. Adv. Mech. Eng. 4, 315.
Google Scholar
[24]
S. Sankaranarayanan, V.H. Shankar, S. Jayalakshmi, N.Q. Bau and M. Gupta (2015) Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach, J. Alloys Compd. Vol.627, 192.
DOI: 10.1016/j.jallcom.2014.12.009
Google Scholar
[25]
S. Singh, Gupta, D. and V. Jain (2016) Microwave melting and processing of metal–ceramic composite castings, Proc IMechE Part B: J Engineering Manufacture 1–9.
Google Scholar
[26]
R. Rani, P. Kumar, S. Singh, J.K. Juneja and C. Prakash (2017) Improvement in magnetoelectric and other physical properties of BSZT-NZF composites by microwave sintering, Journal of Alloys and Compounds, Vol.690, pp.716-719.
DOI: 10.1016/j.jallcom.2016.08.119
Google Scholar
[27]
S.A.M. Krishna, T.N. Shridhar, L.Krishnamurthy (2015).
Google Scholar