Multi Objective Optimization of Wear Behaviour of In Situ AA8011-ZrB2 Metal Matrix Composites by Using Taguchi-Grey Analysis

Article Preview

Abstract:

Composite materials with aluminium alloy 8011 matrix and 0, 4 and 8 weight percentages of ZrB2 reinforcements were synthesized by in-situ stir casting process. The presence and homogeneous distribution of the reinforcements were examined with X-ray diffraction analysis and scanning electron microscopic analysis. To investigate the effect of dry sliding wear parameters such as sliding distance, percentage reinforcement, load, sliding velocity and temperature on wear rate and co-efficient of friction, experiments were conducted using a pin on disc wear tester as per Taguchi’s orthogonal array design and the tribological behaviour of synthesized composites was investigated by statistical techniques. Significance and the influence of the parameters over the response were determined by analysis of variances and grey relational analysis was used to find the optimal combination of parameters to obtain minimum wear rate and co-efficient of friction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-167

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Gecu, Ş.H. Atapek and A. Karaaslan:  Tribol Int Vol.115 (2017), p.608.

Google Scholar

[2] S. Baskaran, V. Anandakrishnan and M. Duraiselvam: Mater. Des Vol. 60 (2014), p.184.

Google Scholar

[3] W. Zhang, D. Ding and P. Gao : Mater. Des Vol.90 (2016), p.834.

Google Scholar

[4] K. Umanath, K. Palanikumar and S.T. Selvamani Compos. Part B. Eng Vol. 53 (2013) p.159.

Google Scholar

[5] Y. Bao, D.T. Gawne, J. Gao, T. Zhang, B.D. Cuenca and A. Alberdi: Surf. Coat. Technol Vol. 232 (2013) p.150.

Google Scholar

[6] L.A. Mabhali, N. Sacks and S. Pityana: Wear, Vol. 290 (2012) p.1.

Google Scholar

[7] A.A. Hamid, P.K. Ghosh, S.C. Jain and S. Ray: Wear, Vol. 265(1) (2008) p.14.

Google Scholar

[8] N. Kumar, R.K. Gautam and S. Mohan Mater. Des Vol. 80 (2015) p.129.

Google Scholar

[9] I. Dinaharan and N. Murugan: T. Nonferr. Metal.Soc Vol. 22(4) (2012) p.810.

Google Scholar

[10] K.J. Lijay, J.D.R. Selvam, I. Dinaharan and S. Vijay: T. Nonferr. Metal.Soc Vol. 26(7) (2016) p.1791.

Google Scholar

[11] Y.H. Çelik and K. Seçilmiş: Adv. Powder. Technol Vol. 28 (2017) p.2218.

Google Scholar

[12] G.N. Kumar, R. Narayanasamy Natarajan, Babu, S.K., Sivaprasad, K. and S. Sivasankaran: Mater. Des Vol. 31(3) (2010), p.1526.

Google Scholar

[13] S. Baskaran, V. Anandakrishnan and S. Sathish: Advanced Materials Research Vol. 651 (2013), p.251.

Google Scholar

[14] C. Raja, R. Devi, S. Sivaprakash, V. Anandakrishnan: Applied Mechanics and Materials Vol. 592-594 (2014), p.755.

Google Scholar

[15] S. Baskaran, V. Anandakrishnan, M. Duraiselvam and N.Keerthivasan: International Journal of Mechanical And Production Engineering Vol. 3 (2015), p.9.

Google Scholar

[16] N.S. Prabhakar, N. Radhika and R. Raghu: Procedia. Engineer Vol. 97 (2014), p.994.

Google Scholar

[17] S. Baskaran, V. Anandakrishnan, M. Durai Selvam, S. Raghuraman and V.M. Muthaiyaa: Adv. Appl. Mater Vol. 541 (2014), p.258.

DOI: 10.4028/www.scientific.net/amm.541-542.258

Google Scholar

[18] P. P. Shantharaman, M. Prabhakar, V. Anandakrishnan and S. Sathish: Trans Indian Inst Met (2017).

Google Scholar

[19] K. Ilayaraja, P. Ranjith Kumar, V. Anandakrishnan, S. Sathish, M. Ravichandran and R.Ravikumar: J. Adv. Chem. Vol. 13 (2017), p.5293.

Google Scholar

[20] M.K. Sahu, A. Valarmathi, S. Baskaran, V. Anandakrishnan and R.K. Pandey: Proc IMechE Part B: J Engineering Manufacture Vol. 228 (2014), p.1501.

Google Scholar