Effects of Current Pulsation on Magnetic Properties and Giant Magnetoimpedance of Electrodeposited NiFe Coatings on Cu Wires

Article Preview

Abstract:

This work presents a systematic study of the effects of current pulsation on soft magnetic properties and giant magnetoimpedance (GMI) of nickel-iron (NiFe) coatings electrodeposited on copper wires. The specimens were prepared by the electrodeposition technique with controlled bath compositions and varied applied current waveforms. The microstructural and chemical investigations indicate that current pulsation with 50% duty cycle and 50 Hz frequency provides significantly smoother coating surface of uniform nodules, with comparable Fe content but different phase composition, as compared to the direct current condition. The vibrating sample magnetometer evidently shows that the deposits prepared with a pulsed current exhibit relatively small coercivity, below 4 Oe. Using the four-point probe technique, the MI ratio of the pulse deposits is found to reach a significantly high value above 2,000% with decent sensitivity. The benefits of current pulsation in improving the characteristics of NiFe deposits, and correspondingly the alloys’ soft magnetic properties and MI effects are demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-242

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Tsay, C.C. Hu and C.K. Wang: Mater Chem Phys Vol. 89 (2005), p.275.

Google Scholar

[2] D. Cao, Z. Wang, E. Feng, J. Wei, J. Wang and Q. Liu: Journal of Alloys and Compounds Vol. 581 (2013), p.66.

Google Scholar

[3] V.C. Kieling: Surf Coat Tech Vol. 96 (1997), p.135.

Google Scholar

[4] Y.S. Peng, Z.W. Zhu, J.B. Chen, J.H. Ren and T.J. Han: Aip Adv Vol. 4 (2014).

Google Scholar

[5] E. Aydogmus, H. Kaya, F.E. Atalay, S. Atalay and D. Avcu: Acta Phys Pol A Vol. 125 (2014), p.227.

DOI: 10.12693/aphyspola.125.227

Google Scholar

[6] H.L. Seet, X.P. Li, J.B. Yi, W.Y. Ooi and K.S. Lee: Journal of Alloys and Compounds Vol. 449 (2008), p.284.

Google Scholar

[7] M.H. Phan and H.X. Peng: Prog Mater Sci Vol. 53 (2008), p.323.

Google Scholar

[8] M.L. Trudeau: Nanostruct Mater Vol. 12 (1999), p.55.

Google Scholar

[9] H. Lee, W. Bang, K. Hong, D. Kim, J. Na and W.Y. Jeung: Ieee T Magn Vol. 45 (2009), p.2748.

Google Scholar

[10] V. Zhukova, A. Talaat, M. Ipatov, J.J. del Val, L. Gonzalez-Legarreta, B. Hernando and A. Zhukov: J Electron Mater Vol. 43 (2014), p.4540.

DOI: 10.1007/s11664-014-3370-4

Google Scholar

[11] R.J. McKay: Industrial & Engineering Chemistry Vol. 28 (1936), p.1391.

Google Scholar

[12] K.M. Yin and B.T. Lin: Surf Coat Tech Vol. 78 (1996), p.205.

Google Scholar

[13] D. Flynn and M.P.Y. Desmulliez: Ieee T Magn Vol. 46 (2010), p.979.

Google Scholar

[14] H.L. Seet, X.P. Li, K.S. Lee and H.Y. Chia: J Mater Process Tech Vol. 192 (2007), p.225.

Google Scholar

[15] R. Kannan and S. Ganesan: Optoelectron Adv Mat Vol. 8 (2014), p.274.

Google Scholar

[16] B. Dodrill and B. Kelley: Copyright Lake Shore Cryotronics Vol. (1999), p.1.

Google Scholar

[17] F. Fiorillo, C. Beatrice, D. Son, H. Ahlers, R. Groessinger, F. Albertini, Y.P. Liu, A. Lin, E. Patroi, R. Shull, O. Thomas and M.J. Hall: Int J Appl Electrom Vol. 44 (2014), p.245.

DOI: 10.3233/jae-141786

Google Scholar

[18] G. Kurlyandskaya, P. Jantaratana, M.A. Cerdeira and V. Va'kovskiy: Vol. (2013).

Google Scholar

[19] B. Zhang, N.-E. Fenineche, H. Liao and C. Coddet: Journal of Materials Science & Technology Vol. 29 (2013), p.757.

Google Scholar

[20] K. Nakamura, M. Umetani and T. Hayashi: Surface Technology Vol. 25 (1985), p.111.

Google Scholar

[21] R. Abdel-Karim, Y. Reda, M. Muhammed, S. El-Raghy, M. Shoeib and H. Ahmed: Journal of Nanomaterials Vol. 2011 (2011), p.7.

DOI: 10.1155/2011/519274

Google Scholar

[22] M. Bahgat, M.-K. Paek and J.-J. Pak: Materials transactions Vol. 48 (2007), p.3132.

Google Scholar

[23] X. Ji, H. Duan, C. Yan and C. Luo: Surface and Coatings Technology Vol. (2016).

Google Scholar

[24] F.M.F. Rhen and S. Roy: J Appl Phys Vol. 103 (2008).

Google Scholar

[25] J. Shen and J. Kirschner: Surf Sci Vol. 500 (2002), p.300.

Google Scholar

[26] T. Chotibhawaris, T. Luangvaranunt, P. Jantaratana and B. Yuttanant, Advanced Materials Research, Trans Tech Publ, 2014, p.709.

Google Scholar

[27] T. Osaka, M. Takai, K. Hayashi, Y. Sogawa, K. Ohashi, Y. Yasue, M. Saito and K. Yamada: Ieee T Magn Vol. 34 (1998), p.1432.

DOI: 10.1109/20.706572

Google Scholar

[28] M.E. McHenry and D.E. Laughlin: Acta Materialia Vol. 48 (2000), p.223.

Google Scholar

[29] H. Wang, W.Q. Li, S.P. Wong, W.Y. Cheung, N. Ke, J.B. Xu, X. Lu and X. Yan: Materials Characterization Vol. 48 (2002), p.153.

Google Scholar

[30] X. Qin, J. Kim and J. Lee: Nanostruct Mater Vol. 11 (1999), p.259.

Google Scholar

[31] I. Tabakovic, V. Inturi and S. Riemer: Journal of The Electrochemical Society Vol. 149 (2002), p.C18.

Google Scholar

[32] R. Štefec: Czechoslovak Journal of Physics B Vol. 23 p.1249.

Google Scholar

[33] P. Jantaratana and C. Sirisathitkul: Ieee T Magn Vol. 42 (2006), p.358.

Google Scholar

[34] F.E. Atalay and S. Atalay: Journal of Alloys and Compounds Vol. 392 (2005), p.322.

Google Scholar

[35] S.O. Volchkov, E. Fernandez, A. Garcia-Arribas, J.M. Barandiaran, V.N. Lepalovskij and G.V. Kurlyandskaya: Magnetics, IEEE Transactions on Vol. 47 (2011), p.3328.

DOI: 10.1109/tmag.2011.2157896

Google Scholar

[36] D. de Cos, L.V. Panina, N. Fry, I. Orue, A. Garcia-Arribas and J.M. Barandiaran: Magnetics, IEEE Transactions on Vol. 41 (2005), p.3697.

DOI: 10.1109/tmag.2005.854812

Google Scholar

[37] Y. Zhang, C. Mu, C. Luo, J. Dong, Q. Liu and J. Wang: Nanoscale Research Letters Vol. 7 (2012), p.506.

Google Scholar

[38] G.V. Kurlyandskaya, A.V. Svalov, E. Fernandez, A. Garcia-Arribas and J.M. Barandiaran: J Appl Phys Vol. 107 (2010), p.09C502.

DOI: 10.1063/1.3355473

Google Scholar